Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
cos A=(60)/(61) and 
tan B=(8)/(15) and angles A and B are in Quadrant I, find the value of 
tan(A+B).
Answer:

If cosA=6061 \cos A=\frac{60}{61} and tanB=815 \tan B=\frac{8}{15} and angles A and B are in Quadrant I, find the value of tan(A+B) \tan (A+B) .\newlineAnswer:

Full solution

Q. If cosA=6061 \cos A=\frac{60}{61} and tanB=815 \tan B=\frac{8}{15} and angles A and B are in Quadrant I, find the value of tan(A+B) \tan (A+B) .\newlineAnswer:
  1. Use tangent identity: Use the identity for the tangent of a sum of two angles.\newlineThe identity is tan(A+B)=tanA+tanB1tanAtanB\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \cdot \tan B}.\newlineWe know tanB\tan B, but we need to find tanA\tan A.
  2. Find tanA\tan A: Find tanA\tan A using the given value of cosA\cos A and the Pythagorean identity.\newlineSince cosA=adjacenthypotenuse\cos A = \frac{\text{adjacent}}{\text{hypotenuse}}, we have adjacent=60\text{adjacent} = 60 and hypotenuse=61\text{hypotenuse} = 61.\newlineTo find the opposite side, we use the Pythagorean theorem: opposite2=hypotenuse2adjacent2\text{opposite}^2 = \text{hypotenuse}^2 - \text{adjacent}^2.
  3. Calculate opposite side: Calculate the opposite side for angle AA. \newlineopposite2=612602=37213600=121\text{opposite}^2 = 61^2 - 60^2 = 3721 - 3600 = 121. \newlineTaking the square root gives us opposite=11\text{opposite} = 11.
  4. Calculate tanA\tan A: Calculate tanA\tan A using the opposite and adjacent sides.tanA=oppositeadjacent=1160\tan A = \frac{\text{opposite}}{\text{adjacent}} = \frac{11}{60}.
  5. Substitute into identity: Substitute tanA\tan A and tanB\tan B into the identity for tan(A+B)\tan(A+B).\newline\(\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \cdot \tan B} = \frac{\frac{11}{60} + \frac{8}{15}}{1 - (\frac{11}{60} \cdot \frac{8}{15}))\).
  6. Simplify expression: Simplify the expression for \(\tan(A+B)\). First, find a common denominator for the sum in the numerator: \(60 \times 15 = 900\). \(\tan(A+B) = \frac{(11 \times 15) + (8 \times 60)}{900 - (11 \times 8)} = \frac{(165 + 480)}{(900 - 88)}\).
  7. Reduce fraction: Continue simplifying the expression. \(\tan(A+B) = \frac{645}{900 - 88} = \frac{645}{812}\).
  8. Reduce fraction: Continue simplifying the expression. \(\tan(A+B) = \frac{645}{900 - 88} = \frac{645}{812}\). Reduce the fraction to its simplest form if possible. The fraction \(\frac{645}{812}\) cannot be simplified further as they do not have common factors other than \(1\).

More problems from Quadrants