Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
4-5x^(2)-2y^(2)=y^(3)-x then find 
(dy)/(dx) at the point 
(1,-2).
Answer: 
(dy)/(dx)|_((1,-2))=

If 45x22y2=y3x 4-5 x^{2}-2 y^{2}=y^{3}-x then find dydx \frac{d y}{d x} at the point (1,2) (1,-2) .\newlineAnswer: dydx(1,2)= \left.\frac{d y}{d x}\right|_{(1,-2)}=

Full solution

Q. If 45x22y2=y3x 4-5 x^{2}-2 y^{2}=y^{3}-x then find dydx \frac{d y}{d x} at the point (1,2) (1,-2) .\newlineAnswer: dydx(1,2)= \left.\frac{d y}{d x}\right|_{(1,-2)}=
  1. Differentiate with Chain Rule: First, we need to find the derivative of both sides of the equation with respect to xx. This will involve using the chain rule for the terms involving yy, since yy is a function of xx. Differentiate both sides of the equation with respect to xx: ddx(45x22y2)=ddx(y3x)\frac{d}{dx}(4 - 5x^2 - 2y^2) = \frac{d}{dx}(y^3 - x) This gives us: 010x4ydydx=3y2dydx10 - 10x - 4y\frac{dy}{dx} = 3y^2\frac{dy}{dx} - 1
  2. Rearrange to Solve: Now, we rearrange the terms to solve for dy/dxdy/dx:4y(dy/dx)3y2(dy/dx)=10x+1-4y(dy/dx) - 3y^2(dy/dx) = -10x + 1Combine like terms:dy/dx(4y3y2)=10x+1dy/dx(-4y - 3y^2) = -10x + 1
  3. Isolate dydx\frac{dy}{dx}: Next, we isolate dydx\frac{dy}{dx} by dividing both sides by (4y3y2)(-4y - 3y^2):dydx=10x+14y3y2\frac{dy}{dx} = \frac{-10x + 1}{-4y - 3y^2}
  4. Substitute Point: Now we substitute the point (1,2)(1, -2) into the equation to find the value of dydx\frac{dy}{dx} at that point:\newlinedydx(1,2)=(10(1)+1)(4(2)3(2)2)\left.\frac{dy}{dx}\right|_{(1,-2)} = \frac{(-10(1) + 1)}{(-4(-2) - 3(-2)^2)}
  5. Perform Calculations: Perform the calculations:\newlinedydx(1,2)=(10+1)(83(4))\frac{dy}{dx}\bigg|_{(1,-2)} = \frac{(-10 + 1)}{(8 - 3(4))}\newlinedydx(1,2)=(9)(812)\frac{dy}{dx}\bigg|_{(1,-2)} = \frac{(-9)}{(8 - 12)}\newlinedydx(1,2)=(9)(4)\frac{dy}{dx}\bigg|_{(1,-2)} = \frac{(-9)}{(-4)}
  6. Simplify Fraction: Finally, simplify the fraction: dydx(1,2)=94\frac{dy}{dx}\bigg|_{(1,-2)} = \frac{9}{4}

More problems from Simplify variable expressions using properties