Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
-1-x^(2)+y^(2)=y^(3)-5y then find 
(dy)/(dx) at the point 
(1,-2).
Answer: 
(dy)/(dx)|_((1,-2))=

If 1x2+y2=y35y -1-x^{2}+y^{2}=y^{3}-5 y then find dydx \frac{d y}{d x} at the point (1,2) (1,-2) .\newlineAnswer: dydx(1,2)= \left.\frac{d y}{d x}\right|_{(1,-2)}=

Full solution

Q. If 1x2+y2=y35y -1-x^{2}+y^{2}=y^{3}-5 y then find dydx \frac{d y}{d x} at the point (1,2) (1,-2) .\newlineAnswer: dydx(1,2)= \left.\frac{d y}{d x}\right|_{(1,-2)}=
  1. Implicit Differentiation: First, we need to implicitly differentiate both sides of the equation with respect to xx. The equation is 1x2+y2=y35y-1 - x^2 + y^2 = y^3 - 5y. Differentiating both sides with respect to xx gives us: ddx(1x2+y2)=ddx(y35y)\frac{d}{dx}(-1 - x^2 + y^2) = \frac{d}{dx}(y^3 - 5y).
  2. Differentiate Left Side: Differentiate the left side of the equation term by term.\newline(d)/(dx)(1)=0(d)/(dx)(-1) = 0 because the derivative of a constant is 00.\newline(d)/(dx)(x2)=2x(d)/(dx)(-x^2) = -2x because the derivative of x2x^2 is 2x2x, and we multiply by the coefficient 1-1.\newline(d)/(dx)(y2)=2y(dy/dx)(d)/(dx)(y^2) = 2y(dy/dx) because yy is a function of xx, so we use the chain rule.\newlineThe left side becomes 02x+2y(dy/dx)0 - 2x + 2y(dy/dx).
  3. Differentiate Right Side: Differentiate the right side of the equation term by term.\newlineddx(y3)=3y2dydx\frac{d}{dx}(y^3) = 3y^2\frac{dy}{dx} because we use the chain rule, where the derivative of y3y^3 is 3y23y^2, and we multiply by dydx\frac{dy}{dx}.\newlineddx(5y)=5dydx\frac{d}{dx}(-5y) = -5\frac{dy}{dx} because the derivative of 5y5y with respect to xx is 55 times the derivative of yy with respect to xx.\newlineThe right side becomes y3y^300.
  4. Combine Derivatives: Combine the derivatives to form an equation:\newline2x+2ydydx=3y2dydx5dydx-2x + 2y\frac{dy}{dx} = 3y^2\frac{dy}{dx} - 5\frac{dy}{dx}.\newlineNow we need to solve for dydx\frac{dy}{dx}.
  5. Group and Factor: Group all the terms containing dydx\frac{dy}{dx} on one side and the remaining terms on the other side:\newline2ydydx3y2dydx+5dydx=2x2y\frac{dy}{dx} - 3y^2\frac{dy}{dx} + 5\frac{dy}{dx} = 2x.\newlineFactor out dydx\frac{dy}{dx} from the left side:\newlinedydx(2y3y2+5)=2x\frac{dy}{dx}(2y - 3y^2 + 5) = 2x.
  6. Solve for dydx\frac{dy}{dx}: Solve for dydx\frac{dy}{dx} by dividing both sides by (2y3y2+5)(2y - 3y^2 + 5):dydx=2x2y3y2+5.\frac{dy}{dx} = \frac{2x}{2y - 3y^2 + 5}.
  7. Substitute Point: Substitute the point (1,2)(1, -2) into the equation to find (dy/dx)(dy/dx) at that point:\newline$(dy/dx)|_{(\(1\),\(-2\))} = \frac{\(2\)(\(1\))}{\(2\)(\(-2\)) - \(3\)(\(-2\))^\(2\) + \(5\)}.
  8. Calculate \(\frac{dy}{dx}\): Calculate the value of \(\left(\frac{dy}{dx}\right)\) at the point \((1, -2)\):
    \(\left.\frac{dy}{dx}\right|_{(1,-2)} = \frac{2}{(-4 - 3(4) + 5)}\).
    \(\left.\frac{dy}{dx}\right|_{(1,-2)} = \frac{2}{(-4 - 12 + 5)}\).
    \(\left.\frac{dy}{dx}\right|_{(1,-2)} = \frac{2}{(-11)}\).
    \(\left.\frac{dy}{dx}\right|_{(1,-2)} = -\frac{2}{11}\).

More problems from Find derivatives of using multiple formulae