Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
1-4y^(2)+2y=-x^(3)-y^(3) then find 
(dy)/(dx) at the point 
(3,-2).
Answer: 
(dy)/(dx)|_((3,-2))=

If 14y2+2y=x3y3 1-4 y^{2}+2 y=-x^{3}-y^{3} then find dydx \frac{d y}{d x} at the point (3,2) (3,-2) .\newlineAnswer: dydx(3,2)= \left.\frac{d y}{d x}\right|_{(3,-2)}=

Full solution

Q. If 14y2+2y=x3y3 1-4 y^{2}+2 y=-x^{3}-y^{3} then find dydx \frac{d y}{d x} at the point (3,2) (3,-2) .\newlineAnswer: dydx(3,2)= \left.\frac{d y}{d x}\right|_{(3,-2)}=
  1. Differentiate with respect to x: First, we need to differentiate both sides of the equation with respect to xx to find dydx\frac{dy}{dx}. The equation is 14y2+2y=x3y31 - 4y^2 + 2y = -x^3 - y^3. We will apply the chain rule to differentiate terms involving yy with respect to xx.
  2. Left side differentiation: Differentiate the left side of the equation with respect to xx: ddx(1)ddx(4y2)+ddx(2y)\frac{d}{dx}(1) - \frac{d}{dx}(4y^2) + \frac{d}{dx}(2y). The derivative of a constant is 00, so ddx(1)=0\frac{d}{dx}(1) = 0. For the other terms, we need to use the chain rule because they are functions of yy, which is a function of xx. So, ddx(4y2)=8ydydx\frac{d}{dx}(4y^2) = 8y\frac{dy}{dx} and ddx(2y)=2dydx\frac{d}{dx}(2y) = 2\frac{dy}{dx}.
  3. Right side differentiation: Differentiate the right side of the equation with respect to xx: ddx(x3)ddx(y3)\frac{d}{dx}(-x^3) - \frac{d}{dx}(y^3). The derivative of x3-x^3 with respect to xx is 3x2-3x^2. For the term ddx(y3)-\frac{d}{dx}(y^3), we again use the chain rule, giving us 3y2dydx-3y^2\frac{dy}{dx}.
  4. Combine derivatives: Now we combine the derivatives from both sides to form the equation: 08ydydx+2dydx=3x23y2dydx0 - 8y\frac{dy}{dx} + 2\frac{dy}{dx} = -3x^2 - 3y^2\frac{dy}{dx}. Simplifying, we get 8ydydx+2dydx+3y2dydx=3x2-8y\frac{dy}{dx} + 2\frac{dy}{dx} + 3y^2\frac{dy}{dx} = -3x^2.
  5. Factor out dydx\frac{dy}{dx}: We can factor out dydx\frac{dy}{dx} on the left side of the equation: dydx(8y+2+3y2)=3x2\frac{dy}{dx}(-8y + 2 + 3y^2) = -3x^2. This gives us dydx=3x28y+2+3y2\frac{dy}{dx} = \frac{-3x^2}{-8y + 2 + 3y^2}.
  6. Substitute point: Now we substitute the point (3,2)(3, -2) into the equation to find the value of dydx\frac{dy}{dx} at that point. Plugging in x=3x = 3 and y=2y = -2, we get dydx=3(3)2(8(2)+2+3(2)2)\frac{dy}{dx} = \frac{-3(3)^2}{(-8(-2) + 2 + 3(-2)^2)}.
  7. Calculate value: Calculate the value: dydx=3(9)16+2+3(4)\frac{dy}{dx} = \frac{-3(9)}{16 + 2 + 3(4)}. This simplifies to dydx=2716+2+12.\frac{dy}{dx} = \frac{-27}{16 + 2 + 12}.
  8. Simplify denominator: Further simplifying the denominator: dydx=2730\frac{dy}{dx} = -\frac{27}{30}. This reduces to dydx=2730\frac{dy}{dx} = -\frac{27}{30}, which can be simplified to dydx=910\frac{dy}{dx} = -\frac{9}{10}.

More problems from Simplify variable expressions using properties