Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

How does h(x)=4xh(x)=4^x change over the interval from x=8x=8 to x=10x=10?\newlineChoices:\newlineh(x) increases by a factor of 16\text{h(x) increases by a factor of 16}\newlineh(x) increases by a factor of 8\text{h(x) increases by a factor of 8}\newlineh(x) decreases by a factor of 16\text{h(x) decreases by a factor of 16}\newlineh(x) decreases by a factor of 8%\text{h(x) decreases by a factor of 8\%}

Full solution

Q. How does h(x)=4xh(x)=4^x change over the interval from x=8x=8 to x=10x=10?\newlineChoices:\newlineh(x) increases by a factor of 16\text{h(x) increases by a factor of 16}\newlineh(x) increases by a factor of 8\text{h(x) increases by a factor of 8}\newlineh(x) decreases by a factor of 16\text{h(x) decreases by a factor of 16}\newlineh(x) decreases by a factor of 8%\text{h(x) decreases by a factor of 8\%}
  1. Find h(8)h(8): Find h(8)h(8).\newlineh(8)=48h(8) = 4^8\newline=65536= 65536
  2. Find h(10) h(10) : Find h(10) h(10) . h(10)=410 h(10) = 4^{10} = 1048576 1048576
  3. Calculate factor increase: Calculate the factor by which h(x)h(x) increases. Factor = h(10)h(8)\frac{h(10)}{h(8)} = 104857665536\frac{1048576}{65536} = 1616

More problems from Solve equations with variable exponents

QuestionGet tutor helpright-arrow

Posted 7 months ago

QuestionGet tutor helpright-arrow

Posted 9 months ago