Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

h(x)={[5x," for "x < -2],[x^(3)-2," for "x >= -2]:}
Find 
lim_(x rarr-2)h(x).
Choose 1 answer:
(A) -10
(B) -2
(C) 10
(D) The limit doesn't exist.

h(x)={5xamp; for xlt;2x32amp; for x2 h(x)=\left\{\begin{array}{ll} 5 x &amp; \text { for } x&lt;-2 \\ x^{3}-2 &amp; \text { for } x \geq-2 \end{array}\right. \newlineFind limx2h(x) \lim _{x \rightarrow-2} h(x) .\newlineChoose 11 answer:\newline(A) 10-10\newline(B) 2-2\newline(C) 1010\newline(D) The limit doesn't exist.

Full solution

Q. h(x)={5x for x<2x32 for x2 h(x)=\left\{\begin{array}{ll} 5 x & \text { for } x<-2 \\ x^{3}-2 & \text { for } x \geq-2 \end{array}\right. \newlineFind limx2h(x) \lim _{x \rightarrow-2} h(x) .\newlineChoose 11 answer:\newline(A) 10-10\newline(B) 2-2\newline(C) 1010\newline(D) The limit doesn't exist.
  1. Consider Limits: To find the limit of the piecewise function h(x)h(x) as xx approaches 2-2, we need to consider the limit from both sides of 2-2, that is, from the left and from the right.
  2. Left Side Limit: First, let's find the limit from the left side xx approaching 2-2 from values less than 2-2. For x < -2, the function is defined as h(x)=5xh(x) = 5x.limx2h(x)=limx25x=5×(2)=10\lim_{x \to -2^-} h(x) = \lim_{x \to -2^-} 5x = 5 \times (-2) = -10.
  3. Right Side Limit: Now, let's find the limit from the right side xx approaching 2-2 from values greater than or equal to 2-2. For x2x \geq -2, the function is defined as h(x)=x32h(x) = x^3 - 2.limx2+h(x)=limx2+(x32)=(2)32=82=10\lim_{x \to -2^+} h(x) = \lim_{x \to -2^+} (x^3 - 2) = (-2)^3 - 2 = -8 - 2 = -10.
  4. Final Limit: Since the limit from the left side and the limit from the right side are equal, the limit of h(x)h(x) as xx approaches 2-2 exists and is equal to 10-10.

More problems from Find derivatives of logarithmic functions