Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given 
x > 0, the expression 
root(8)(x^(9)) is equivalent to

x^(2)root(8)(x^(2))

x^(2)root(8)(x)

xroot(8)(x)

xroot(8)(x^(2))

Given x>0 , the expression x98 \sqrt[8]{x^{9}} is equivalent to\newlinex2x28 x^{2} \sqrt[8]{x^{2}} \newlinex2x8 x^{2} \sqrt[8]{x} \newlinexx8 x \sqrt[8]{x} \newlinexx28 x \sqrt[8]{x^{2}}

Full solution

Q. Given x>0 x>0 , the expression x98 \sqrt[8]{x^{9}} is equivalent to\newlinex2x28 x^{2} \sqrt[8]{x^{2}} \newlinex2x8 x^{2} \sqrt[8]{x} \newlinexx8 x \sqrt[8]{x} \newlinexx28 x \sqrt[8]{x^{2}}
  1. Given Expression: We are given the expression x98\sqrt[8]{x^{9}} and we need to simplify it. The 88th root of xx to the 99th power can be expressed as x98x^{\frac{9}{8}}.
  2. Separate into Parts: We can separate x98x^{\frac{9}{8}} into two parts: x88×x18x^{\frac{8}{8}} \times x^{\frac{1}{8}}. This is because 98\frac{9}{8} can be divided into 11 (which is 88\frac{8}{8}) plus 18\frac{1}{8}.
  3. Simplify x88x^{\frac{8}{8}}: Simplify x88x^{\frac{8}{8}} to x1x^1, because any non-zero number to the power of 11 is the number itself. So we have xx18x \cdot x^{\frac{1}{8}}.
  4. Rewrite x18x^{\frac{1}{8}}: Now we can rewrite x18x^{\frac{1}{8}} as the 88th root of xx, which gives us the final expression: xx8x \cdot \sqrt[8]{x}.

More problems from Multiplication with rational exponents