Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given 
x > 0 and 
y > 0, select the expression that is equivalent to

root(3)(-125x^(14)y^(12))

5ix^(11)y^(9)

5ix^((14)/(3))y^(4)

-5x^((14)/(3))y^(4)

-5x^(11)y^(9)

Given x>0 and y>0 , select the expression that is equivalent to\newline125x14y123 \sqrt[3]{-125 x^{14} y^{12}} \newline5ix11y9 5 i x^{11} y^{9} \newline5ix143y4 5 i x^{\frac{14}{3}} y^{4} \newline5x143y4 -5 x^{\frac{14}{3}} y^{4} \newline5x11y9 -5 x^{11} y^{9}

Full solution

Q. Given x>0 x>0 and y>0 y>0 , select the expression that is equivalent to\newline125x14y123 \sqrt[3]{-125 x^{14} y^{12}} \newline5ix11y9 5 i x^{11} y^{9} \newline5ix143y4 5 i x^{\frac{14}{3}} y^{4} \newline5x143y4 -5 x^{\frac{14}{3}} y^{4} \newline5x11y9 -5 x^{11} y^{9}
  1. Evaluate Constant Term Cube Root: Evaluate the cube root of the constant term.\newlineThe cube root of 125-125 is 5-5 because (5)3=125(-5)^3 = -125.
  2. Evaluate x Exponent Cube Root: Evaluate the cube root of x14x^{14}.\newlineTo find the cube root of x14x^{14}, we divide the exponent by 33: x(14/3)x^{(14/3)}.
  3. Evaluate y Exponent Cube Root: Evaluate the cube root of y12y^{12}.\newlineTo find the cube root of y12y^{12}, we divide the exponent by 33: y(12/3)=y4y^{(12/3)} = y^4.
  4. Combine Results: Combine the results from Steps 11, 22, and 33.\newlineThe expression equivalent to 125x14y123 \sqrt[3]{-125x^{14}y^{12}} is 5x(14/3)y4-5x^{(14/3)}y^4.

More problems from Find derivatives of using multiple formulae