Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given 
x > 0 and 
y > 0, select the expression that is equivalent to

root(3)(-125x^(9)y^(6))

-5x^(3)y^(2)

5ix^(3)y^(2)

5ix^(27)y^(18)

-5x^(27)y^(18)

Given x>0 and y>0 , select the expression that is equivalent to\newline125x9y63 \sqrt[3]{-125 x^{9} y^{6}} \newline5x3y2 -5 x^{3} y^{2} \newline5ix3y2 5 i x^{3} y^{2} \newline5ix27y18 5 i x^{27} y^{18} \newline5x27y18 -5 x^{27} y^{18}

Full solution

Q. Given x>0 x>0 and y>0 y>0 , select the expression that is equivalent to\newline125x9y63 \sqrt[3]{-125 x^{9} y^{6}} \newline5x3y2 -5 x^{3} y^{2} \newline5ix3y2 5 i x^{3} y^{2} \newline5ix27y18 5 i x^{27} y^{18} \newline5x27y18 -5 x^{27} y^{18}
  1. Identify cube root of product: Identify the cube root of a product. The cube root of a product is the product of the cube roots of each factor. So, 125x9y63=1253×x93×y63\sqrt[3]{-125x^{9}y^{6}} = \sqrt[3]{-125} \times \sqrt[3]{x^{9}} \times \sqrt[3]{y^{6}}.
  2. Calculate cube root of 125-125: Calculate the cube root of 125-125. The cube root of 125-125 is 5-5 because (5)3=125(-5)^3 = -125. 1253=5\sqrt[3]{-125} = -5.
  3. Calculate cube root of x9x^9: Calculate the cube root of x9x^9.\newlineThe cube root of x9x^9 is x93x^{\frac{9}{3}} because when you take the cube root, you divide the exponent by 33.\newlinex93=x93=x3\sqrt[3]{x^9} = x^{\frac{9}{3}} = x^3.
  4. Calculate cube root of y6y^{6}: Calculate the cube root of y6y^{6}. The cube root of y6y^{6} is y63y^{\frac{6}{3}} because when you take the cube root, you divide the exponent by 33. y63=y63=y2\sqrt[3]{y^{6}} = y^{\frac{6}{3}} = y^2.
  5. Combine results to find equivalent expression: Combine the results to find the equivalent expression.\newlineCombining the results from steps 22, 33, and 44, we get:\newline125x9y63=5×x3×y2\sqrt[3]{-125x^{9}y^{6}} = -5 \times x^{3} \times y^{2}.

More problems from Find derivatives of using multiple formulae