Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given 
x > 0 and 
y > 0, select the expression that is equivalent to

sqrt(-36x^(4)y^(9))

-6x^(2)y^((9)/(2))

6ix^((1)/(2))y^((2)/(9))

-6x^((1)/(2))y^((2)/(9))

6ix^(2)y^((9)/(2))

Given x>0 and y>0 , select the expression that is equivalent to\newline36x4y9 \sqrt{-36 x^{4} y^{9}} \newline6x2y92 -6 x^{2} y^{\frac{9}{2}} \newline6ix12y29 6 i x^{\frac{1}{2}} y^{\frac{2}{9}} \newline6x12y29 -6 x^{\frac{1}{2}} y^{\frac{2}{9}} \newline6ix2y92 6 i x^{2} y^{\frac{9}{2}}

Full solution

Q. Given x>0 x>0 and y>0 y>0 , select the expression that is equivalent to\newline36x4y9 \sqrt{-36 x^{4} y^{9}} \newline6x2y92 -6 x^{2} y^{\frac{9}{2}} \newline6ix12y29 6 i x^{\frac{1}{2}} y^{\frac{2}{9}} \newline6x12y29 -6 x^{\frac{1}{2}} y^{\frac{2}{9}} \newline6ix2y92 6 i x^{2} y^{\frac{9}{2}}
  1. Recognize Imaginary Unit i: First, we need to recognize that the square root of a negative number involves the imaginary unit ii, where i2=1i^2 = -1. Therefore, 1=i\sqrt{-1} = i.
  2. Rewrite Expression by Factoring: Next, we can rewrite the expression inside the square root by factoring out 1-1 from 36-36, which will be taken care of by the imaginary unit ii when we take the square root. So, 36x4y9=1×36x4y9\sqrt{-36x^{4}y^{9}} = \sqrt{-1} \times \sqrt{36x^{4}y^{9}}.
  3. Take Square Root Separately: Now, we can take the square root of 1-1 as ii and the square root of 36x4y936x^{4}y^{9} separately. The square root of 3636 is 66, the square root of x4x^{4} is x2x^{2} (since x > 0), and the square root of y9y^{9} is y92y^{\frac{9}{2}} (since ii00).
  4. Multiply Simplified Expression: Multiplying these together, we get the expression: i×6×x2×y(92)i \times 6 \times x^{2} \times y^{\left(\frac{9}{2}\right)}. This simplifies to 6ix2y(92)6ix^{2}y^{\left(\frac{9}{2}\right)}.
  5. Compare with Given Options: Comparing the simplified expression with the given options, we find that 6ix2y(92)6ix^{2}y^{\left(\frac{9}{2}\right)} matches one of the options exactly.

More problems from Find derivatives of using multiple formulae