Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given 
x > 0 and 
y > 0, select the expression that is equivalent to

root(3)(-64x^(9)y^(10))

4ix^((1)/(3))y^((3)/(10))

-4x^((1)/(3))y^((3)/(10))

4ix^(3)y^((10)/(3))

-4x^(3)y^((10)/(3))

Given x>0 and y>0 , select the expression that is equivalent to\newline64x9y103 \sqrt[3]{-64 x^{9} y^{10}} \newline4ix13y310 4 i x^{\frac{1}{3}} y^{\frac{3}{10}} \newline4x13y310 -4 x^{\frac{1}{3}} y^{\frac{3}{10}} \newline4ix3y103 4 i x^{3} y^{\frac{10}{3}} \newline4x3y103 -4 x^{3} y^{\frac{10}{3}}

Full solution

Q. Given x>0 x>0 and y>0 y>0 , select the expression that is equivalent to\newline64x9y103 \sqrt[3]{-64 x^{9} y^{10}} \newline4ix13y310 4 i x^{\frac{1}{3}} y^{\frac{3}{10}} \newline4x13y310 -4 x^{\frac{1}{3}} y^{\frac{3}{10}} \newline4ix3y103 4 i x^{3} y^{\frac{10}{3}} \newline4x3y103 -4 x^{3} y^{\frac{10}{3}}
  1. Simplify Constant Term: Simplify the cube root of the constant term.\newlineThe cube root of 64-64 is 4-4 because (4)3=64(-4)^3 = -64.
  2. Simplify Variable Term xx: Simplify the cube root of the variable term x9x^{9}. The cube root of x9x^{9} is x93x^{\frac{9}{3}} because when taking the cube root, you divide the exponent by 33. So, x93=x3x^{\frac{9}{3}} = x^{3}.
  3. Simplify Variable Term yy: Simplify the cube root of the variable term y10y^{10}.\newlineThe cube root of y10y^{10} is y103y^{\frac{10}{3}} because when taking the cube root, you divide the exponent by 33. So, y103=y103y^{\frac{10}{3}} = y^{\frac{10}{3}}.
  4. Combine Results: Combine the results from Steps 11, 22, and 33. Combining the results, we get the expression 4x3y(10/3)-4x^3y^{(10/3)}.
  5. Check Answer Choices: Check the answer choices to find the equivalent expression.\newlineThe correct expression that matches our result is 4x3y(103)-4x^{3}y^{\left(\frac{10}{3}\right)}.

More problems from Find derivatives of using multiple formulae