Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given 
x > 0 and 
y > 0, select the expression that is equivalent to

root(3)(-125x^(9)y^(2))

5ix^(3)y^((2)/(3))

-5x^((1)/(3))y^((3)/(2))

-5x^(3)y^((2)/(3))

5ix^((1)/(3))y^((3)/(2))

Given x>0 and y>0 , select the expression that is equivalent to\newline125x9y23 \sqrt[3]{-125 x^{9} y^{2}} \newline5ix3y23 5 i x^{3} y^{\frac{2}{3}} \newline5x13y32 -5 x^{\frac{1}{3}} y^{\frac{3}{2}} \newline5x3y23 -5 x^{3} y^{\frac{2}{3}} \newline5ix13y32 5 i x^{\frac{1}{3}} y^{\frac{3}{2}}

Full solution

Q. Given x>0 x>0 and y>0 y>0 , select the expression that is equivalent to\newline125x9y23 \sqrt[3]{-125 x^{9} y^{2}} \newline5ix3y23 5 i x^{3} y^{\frac{2}{3}} \newline5x13y32 -5 x^{\frac{1}{3}} y^{\frac{3}{2}} \newline5x3y23 -5 x^{3} y^{\frac{2}{3}} \newline5ix13y32 5 i x^{\frac{1}{3}} y^{\frac{3}{2}}
  1. Simplify 125-125: Let's first simplify the cube root of the constant and the variables separately.\newlineThe cube root of 125-125 is 5-5 because (5)3=125(-5)^3 = -125.
  2. Simplify x9x^9: Now, let's consider the variable xx. The cube root of x9x^{9} is x93x^{\frac{9}{3}} because when you take the cube root, you divide the exponent by 33. So, x93x^{\frac{9}{3}} simplifies to x3x^3.
  3. Simplify y2y^2: Next, we look at the variable yy. The cube root of y2y^{2} is y2/3y^{2/3} because, similarly, you divide the exponent by 33 when taking the cube root.
  4. Combine Results: Combining the results from the previous steps, we get the expression 5x3y(2/3)-5x^3y^{(2/3)} as the equivalent expression for the cube root of (125x9y2)(-125x^{9}y^{2}).
  5. Compare with Options: Now, let's compare our result with the given options to find the matching expression. The correct expression that matches our result is 5x3y(23)-5x^{3}y^{\left(\frac{2}{3}\right)}.

More problems from Find derivatives of using multiple formulae