Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given 
x > 0 and 
y > 0, select the expression that is equivalent to

root(3)(-125x^(9)y)

5ix^((1)/(3))y^(3)

-5x^(3)y^((1)/(3))

5ix^(3)y^((1)/(3))

-5x^((1)/(3))y^(3)

Given x>0 and y>0 , select the expression that is equivalent to\newline125x9y3 \sqrt[3]{-125 x^{9} y} \newline5ix13y3 5 i x^{\frac{1}{3}} y^{3} \newline5x3y13 -5 x^{3} y^{\frac{1}{3}} \newline5ix3y13 5 i x^{3} y^{\frac{1}{3}} \newline5x13y3 -5 x^{\frac{1}{3}} y^{3}

Full solution

Q. Given x>0 x>0 and y>0 y>0 , select the expression that is equivalent to\newline125x9y3 \sqrt[3]{-125 x^{9} y} \newline5ix13y3 5 i x^{\frac{1}{3}} y^{3} \newline5x3y13 -5 x^{3} y^{\frac{1}{3}} \newline5ix3y13 5 i x^{3} y^{\frac{1}{3}} \newline5x13y3 -5 x^{\frac{1}{3}} y^{3}
  1. Simplify Constant: Simplify the constant inside the cube root.\newlineThe cube root of 125-125 is 5-5 because (5)3=125(-5)^3 = -125.
  2. Simplify Variable xx: Simplify the variable xx inside the cube root. The cube root of x9x^9 is x3x^3 because (x3)3=x(33)=x9(x^3)^3 = x^{(3*3)} = x^9.
  3. Simplify Variable yy: Simplify the variable yy inside the cube root. Since yy is not raised to a power that is a multiple of 33, it remains inside the cube root. Therefore, the cube root of yy is y1/3y^{1/3}.
  4. Combine Simplified Parts: Combine the simplified parts.\newlineCombining the results from steps 11, 22, and 33, we get the expression 5x3y13-5x^3y^{\frac{1}{3}}.

More problems from Find derivatives of using multiple formulae