Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given the function 
y=(-6-10x^(-1)-x)(-7-7x^(3)), find 
(dy)/(dx) in any form.

Given the function y=(610x1x)(77x3) y=\left(-6-10 x^{-1}-x\right)\left(-7-7 x^{3}\right) , find dydx \frac{d y}{d x} in any form.

Full solution

Q. Given the function y=(610x1x)(77x3) y=\left(-6-10 x^{-1}-x\right)\left(-7-7 x^{3}\right) , find dydx \frac{d y}{d x} in any form.
  1. Identify functions: We are given the function y=(610x1x)(77x3)y=(-6-10x^{-1}-x)(-7-7x^{3}). To find the derivative of this function with respect to xx, we will use the product rule, which states that the derivative of a product of two functions is the derivative of the first function times the second function plus the first function times the derivative of the second function.
  2. Derivative of u: First, let's identify the two functions that are being multiplied. We have u=610x1xu = -6-10x^{-1}-x and v=77x3v = -7-7x^{3}. We will need to find the derivatives of both uu and vv with respect to xx.
  3. Derivative of v: The derivative of uu with respect to xx is given by:\newlinedudx=ddx(6)+ddx(10x1)+ddx(x)\frac{du}{dx} = \frac{d}{dx}(-6) + \frac{d}{dx}(-10x^{-1}) + \frac{d}{dx}(-x)\newlineThe derivative of a constant is 00, so ddx(6)=0\frac{d}{dx}(-6) = 0.\newlineThe derivative of 10x1-10x^{-1} is 10x210x^{-2} because ddx(xn)=nxn1\frac{d}{dx}(x^n) = nx^{n-1}.\newlineThe derivative of x-x is 1-1 because xx00.\newlineSo, xx11.
  4. Apply product rule: Now, let's find the derivative of vv with respect to xx:dvdx=ddx(7)+ddx(7x3)\frac{dv}{dx} = \frac{d}{dx}(-7) + \frac{d}{dx}(-7x^{3})Again, the derivative of a constant is 00, so ddx(7)=0\frac{d}{dx}(-7) = 0. The derivative of 7x3-7x^{3} is 21x2-21x^{2} because ddx(xn)=nxn1\frac{d}{dx}(x^n) = nx^{n-1}. So, dvdx=021x2\frac{dv}{dx} = 0 - 21x^{2}.
  5. Distribute terms: Now we can apply the product rule:\newline(dydx)=(dudx)v+u(dvdx)(\frac{dy}{dx}) = (\frac{du}{dx}) \cdot v + u \cdot (\frac{dv}{dx})\newlineSubstituting the derivatives we found:\newline(dydx)=(10x21)(77x3)+(610x1x)(21x2)(\frac{dy}{dx}) = (10x^{-2} - 1) \cdot (-7-7x^{3}) + (-6-10x^{-1}-x) \cdot (-21x^{2})
  6. Combine like terms: Let's distribute the terms:\newlinedydx=70x2+7+70x+7x4126x21021x3\frac{dy}{dx} = -70x^{-2} + 7 + 70x + 7x^{4} - 126x - 210 - 21x^{3}
  7. Combine like terms: Let's distribute the terms:\newline(dy)/(dx)=70x2+7+70x+7x4126x21021x3(dy)/(dx) = -70x^{-2} + 7 + 70x + 7x^{4} - 126x - 210 - 21x^{3}Now we combine like terms:\newline(dy)/(dx)=7x421x356x203+7x2(dy)/(dx) = 7x^{4} - 21x^{3} - 56x - 203 + 7x^{-2}

More problems from Find derivatives of using multiple formulae