Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given the function 
f(x)=-x^(3)-(4)/(5), then what is 
f(-2x) as a simplified polynomial?
Answer:

Given the function f(x)=x345 f(x)=-x^{3}-\frac{4}{5} , then what is f(2x) f(-2 x) as a simplified polynomial?\newlineAnswer:

Full solution

Q. Given the function f(x)=x345 f(x)=-x^{3}-\frac{4}{5} , then what is f(2x) f(-2 x) as a simplified polynomial?\newlineAnswer:
  1. Substitute 2x-2x into function: First, we need to substitute 2x-2x into the function f(x)=x345f(x) = -x^3 - \frac{4}{5}.\newlinef(2x)=(2x)345f(-2x) = -(-2x)^3 - \frac{4}{5}
  2. Calculate cube of 2x-2x: Now, we calculate the cube of 2x-2x.(2x)3=8x3(-2x)^3 = -8x^3
  3. Substitute cube value back: Substitute the value of (2x)3(-2x)^3 back into the function.\newlinef(2x)=(8x3)45f(-2x) = -(-8x^3) - \frac{4}{5}
  4. Multiply negative sign: Multiply the negative sign into the cube of 2x-2x.\newlinef(2x)=8x345f(-2x) = 8x^3 - \frac{4}{5}
  5. Final simplified function: The function f(2x)f(-2x) is now simplified and there are no further simplifications needed.

More problems from Find derivatives of using multiple formulae