Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given the function 
f(x)=(8x^(3)-9x^(2)+9)(-9+2x^(2)), find 
f^(')(x) in any form.
Answer: 
f^(')(x)=

Given the function f(x)=(8x39x2+9)(9+2x2) f(x)=\left(8 x^{3}-9 x^{2}+9\right)\left(-9+2 x^{2}\right) , find f(x) f^{\prime}(x) in any form.\newlineAnswer: f(x)= f^{\prime}(x)=

Full solution

Q. Given the function f(x)=(8x39x2+9)(9+2x2) f(x)=\left(8 x^{3}-9 x^{2}+9\right)\left(-9+2 x^{2}\right) , find f(x) f^{\prime}(x) in any form.\newlineAnswer: f(x)= f^{\prime}(x)=
  1. Product Rule Explanation: To find the derivative of the function f(x)=(8x39x2+9)(9+2x2)f(x)=(8x^{3}-9x^{2}+9)(-9+2x^{2}), we will use the product rule. The product rule states that the derivative of a product of two functions is the derivative of the first function times the second function plus the first function times the derivative of the second function.
  2. Define Functions: Let's denote the first function as u(x)=8x39x2+9u(x) = 8x^{3}-9x^{2}+9 and the second function as v(x)=9+2x2v(x) = -9+2x^{2}. We need to find the derivatives u(x)u'(x) and v(x)v'(x) separately.
  3. Derivative of u(x)u(x): First, we find the derivative of u(x)=8x39x2+9u(x) = 8x^{3}-9x^{2}+9. Using the power rule, we get:\newlineu(x)=ddx(8x3)ddx(9x2)+ddx(9)u'(x) = \frac{d}{dx}(8x^{3}) - \frac{d}{dx}(9x^{2}) + \frac{d}{dx}(9)\newlineu(x)=38x3129x21+0u'(x) = 3\cdot8x^{3-1} - 2\cdot9x^{2-1} + 0\newlineu(x)=24x218xu'(x) = 24x^{2} - 18x
  4. Derivative of v(x)v(x): Next, we find the derivative of v(x)=9+2x2v(x) = -9+2x^{2}. Again, using the power rule, we get:\newlinev(x)=ddx(9)+ddx(2x2)v'(x) = \frac{d}{dx}(-9) + \frac{d}{dx}(2x^{2})\newlinev(x)=0+22x21v'(x) = 0 + 2\cdot 2x^{2-1}\newlinev(x)=4xv'(x) = 4x
  5. Apply Product Rule: Now we apply the product rule:\newlinef(x)=u(x)v(x)+u(x)v(x)f'(x) = u'(x)v(x) + u(x)v'(x)\newlinef(x)=(24x218x)(9+2x2)+(8x39x2+9)(4x)f'(x) = (24x^{2} - 18x)(-9+2x^{2}) + (8x^{3}-9x^{2}+9)(4x)
  6. Expand Products: We need to expand the products:\newlinef(x)=(24x2(9)+24x2(2x2)18x(9)+18x(2x2))+(8x34x9x24x+94x)f'(x) = (24x^{2}(-9) + 24x^{2}(2x^{2}) - 18x(-9) + 18x(-2x^{2})) + (8x^{3}4x - 9x^{2}4x + 9\cdot 4x)\newlinef(x)=(216x2+48x4+162x36x3)+(32x436x3+36x)f'(x) = (-216x^{2} + 48x^{4} + 162x - 36x^{3}) + (32x^{4} - 36x^{3} + 36x)
  7. Combine Like Terms: Now we combine like terms:\newlinef(x)=48x4216x2+162x36x3+32x436x3+36xf'(x) = 48x^{4} - 216x^{2} + 162x - 36x^{3} + 32x^{4} - 36x^{3} + 36x\newlinef(x)=(48x4+32x4)+(36x336x3)+(216x2)+(162x+36x)f'(x) = (48x^{4} + 32x^{4}) + (-36x^{3} - 36x^{3}) + (-216x^{2}) + (162x + 36x)\newlinef(x)=80x472x3216x2+198xf'(x) = 80x^{4} - 72x^{3} - 216x^{2} + 198x

More problems from Find derivatives of using multiple formulae