Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given the function 
f(x)=(-7x^(3)-2)(5x^(2)-6+2x^(-3)), find 
f^(')(x) in any form.
Answer: 
f^(')(x)=

Given the function f(x)=(7x32)(5x26+2x3) f(x)=\left(-7 x^{3}-2\right)\left(5 x^{2}-6+2 x^{-3}\right) , find f(x) f^{\prime}(x) in any form.\newlineAnswer: f(x)= f^{\prime}(x)=

Full solution

Q. Given the function f(x)=(7x32)(5x26+2x3) f(x)=\left(-7 x^{3}-2\right)\left(5 x^{2}-6+2 x^{-3}\right) , find f(x) f^{\prime}(x) in any form.\newlineAnswer: f(x)= f^{\prime}(x)=
  1. Identify Functions: To find the derivative of the function f(x)=(7x32)(5x26+2x3)f(x) = (-7x^3 - 2)(5x^2 - 6 + 2x^{-3}), we will use the product rule. The product rule states that the derivative of a product of two functions is the derivative of the first function times the second function plus the first function times the derivative of the second function.
  2. Find u(x)u'(x): First, let's identify the two functions that we will be differentiating. We have u(x)=7x32u(x) = -7x^3 - 2 and v(x)=5x26+2x3v(x) = 5x^2 - 6 + 2x^{-3}.
  3. Find v(x)v'(x): Now, we need to find the derivative of u(x)u(x), which is u(x)u'(x). The derivative of 7x3-7x^3 is 21x2-21x^2, and the derivative of a constant is 00. So, u(x)=21x2u'(x) = -21x^2.
  4. Apply Product Rule: Next, we need to find the derivative of v(x)v(x), which is v(x)v'(x). The derivative of 5x25x^2 is 10x10x, the derivative of 6-6 is 00, and the derivative of 2x32x^{-3} is 6x4-6x^{-4} (using the power rule). So, v(x)=10x6x4v'(x) = 10x - 6x^{-4}.
  5. Expand Terms: Now we can apply the product rule: f(x)=u(x)v(x)+u(x)v(x)f'(x) = u'(x)v(x) + u(x)v'(x). Substituting the derivatives we found, we get f(x)=(21x2)(5x26+2x3)+(7x32)(10x6x4)f'(x) = (-21x^2)(5x^2 - 6 + 2x^{-3}) + (-7x^3 - 2)(10x - 6x^{-4}).
  6. Simplify Terms: We will now expand the terms: f'(x) = \(-21x^22(55x^22) - 2121x^22(6-6) - 2121x^22(22x^{3-3}) - 77x^33(1010x) - 77x^33(6-6x^{4-4}) - 22(1010x) - 22(6-6x^{4-4})\.
  7. Combine Like Terms: Simplify the terms: f(x)=105x4+126x242x170x4+42x120x+12x4f'(x) = -105x^4 + 126x^2 - 42x^{-1} - 70x^4 + 42x^{-1} - 20x + 12x^{-4}.
  8. Combine Like Terms: Simplify the terms: f(x)=105x4+126x242x170x4+42x120x+12x4f'(x) = -105x^4 + 126x^2 - 42x^{-1} - 70x^4 + 42x^{-1} - 20x + 12x^{-4}.Combine like terms: f(x)=(105x470x4)+126x220x+(42x142x1)+12x4f'(x) = (-105x^4 - 70x^4) + 126x^2 - 20x + (42x^{-1} - 42x^{-1}) + 12x^{-4}.
  9. Combine Like Terms: Simplify the terms: f(x)=105x4+126x242x170x4+42x120x+12x4f'(x) = -105x^4 + 126x^2 - 42x^{-1} - 70x^4 + 42x^{-1} - 20x + 12x^{-4}.Combine like terms: f(x)=(105x470x4)+126x220x+(42x142x1)+12x4f'(x) = (-105x^4 - 70x^4) + 126x^2 - 20x + (42x^{-1} - 42x^{-1}) + 12x^{-4}.After combining like terms, we get: f(x)=175x4+126x220x+12x4f'(x) = -175x^4 + 126x^2 - 20x + 12x^{-4}.

More problems from Find derivatives of using multiple formulae