Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given the function 
f(x)=-5(5x^(2)+6x-8)^(5), find 
f^(')(x) in any form.
Answer: 
f^(')(x)=

Given the function f(x)=5(5x2+6x8)5 f(x)=-5\left(5 x^{2}+6 x-8\right)^{5} , find f(x) f^{\prime}(x) in any form.\newlineAnswer: f(x)= f^{\prime}(x)=

Full solution

Q. Given the function f(x)=5(5x2+6x8)5 f(x)=-5\left(5 x^{2}+6 x-8\right)^{5} , find f(x) f^{\prime}(x) in any form.\newlineAnswer: f(x)= f^{\prime}(x)=
  1. Identify Functions: To find the derivative of the function f(x)=5(5x2+6x8)5f(x) = -5(5x^{2} + 6x - 8)^{5}, we will use the chain rule. The chain rule states that the derivative of a composite function is the derivative of the outer function evaluated at the inner function times the derivative of the inner function.
  2. Find Outer Function Derivative: First, let's identify the outer function and the inner function. The outer function is g(u)=5u5g(u) = -5u^{5} and the inner function is u(x)=5x2+6x8u(x) = 5x^{2} + 6x - 8. We will find the derivative of each function separately.
  3. Find Inner Function Derivative: The derivative of the outer function g(u)=5u5g(u) = -5u^{5} with respect to uu is g(u)=5×5u51=25u4g'(u) = -5 \times 5u^{5-1} = -25u^{4}.
  4. Apply Chain Rule: The derivative of the inner function u(x)=5x2+6x8u(x) = 5x^{2} + 6x - 8 with respect to xx is u(x)=25x+6=10x+6u'(x) = 2 \cdot 5x + 6 = 10x + 6.
  5. Substitute Derivatives: Now, we apply the chain rule: f(x)=g(u(x))u(x)f'(x) = g'(u(x)) \cdot u'(x). Substituting the derivatives we found, we get f(x)=(25u4)(10x+6)f'(x) = (-25u^{4}) \cdot (10x + 6).
  6. Replace Inner Function: We need to replace uu with the inner function u(x)=5x2+6x8u(x) = 5x^{2} + 6x - 8 to express the derivative entirely in terms of xx. So, f(x)=25(5x2+6x8)4(10x+6)f'(x) = -25(5x^{2} + 6x - 8)^{4} \cdot (10x + 6).
  7. Simplify Expression: Finally, we simplify the expression by distributing the 25-25: f(x)=25×(10x+6)×(5x2+6x8)4f'(x) = -25 \times (10x + 6) \times (5x^{2} + 6x - 8)^{4}.

More problems from Find derivatives of using multiple formulae