Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given the function 
f(x)=(-5-4x-9x^(2))(6x^(3)+10), find 
f^(')(x) in any form.
Answer: 
f^(')(x)=

Given the function f(x)=(54x9x2)(6x3+10) f(x)=\left(-5-4 x-9 x^{2}\right)\left(6 x^{3}+10\right) , find f(x) f^{\prime}(x) in any form.\newlineAnswer: f(x)= f^{\prime}(x)=

Full solution

Q. Given the function f(x)=(54x9x2)(6x3+10) f(x)=\left(-5-4 x-9 x^{2}\right)\left(6 x^{3}+10\right) , find f(x) f^{\prime}(x) in any form.\newlineAnswer: f(x)= f^{\prime}(x)=
  1. Apply Product Rule: To find the derivative of the function f(x)=(54x9x2)(6x3+10)f(x) = (-5 - 4x - 9x^2)(6x^3 + 10), we will use the product rule. The product rule states that the derivative of a product of two functions is the derivative of the first function times the second function plus the first function times the derivative of the second function.
  2. Define Functions: Let's denote the first function as u(x)=54x9x2u(x) = -5 - 4x - 9x^2 and the second function as v(x)=6x3+10v(x) = 6x^3 + 10. We will find the derivatives of u(x)u(x) and v(x)v(x) separately.
  3. Find u(x)u'(x): The derivative of u(x)=54x9x2u(x) = -5 - 4x - 9x^2 with respect to xx is u(x)=ddx(5)ddx(4x)ddx(9x2)=0418xu'(x) = \frac{d}{dx}(-5) - \frac{d}{dx}(4x) - \frac{d}{dx}(9x^2) = 0 - 4 - 18x.
  4. Find v(x)v'(x): The derivative of v(x)=6x3+10v(x) = 6x^3 + 10 with respect to xx is v(x)=ddx(6x3)+ddx(10)=18x2+0v'(x) = \frac{d}{dx}(6x^3) + \frac{d}{dx}(10) = 18x^2 + 0.
  5. Use Product Rule Formula: Now we apply the product rule: f(x)=u(x)v(x)+u(x)v(x)f'(x) = u'(x)v(x) + u(x)v'(x).
  6. Substitute Derivatives: Substitute the derivatives and original functions into the product rule formula: f(x)=(0418x)(6x3+10)+(54x9x2)(18x2)f'(x) = (0 - 4 - 18x)(6x^3 + 10) + (-5 - 4x - 9x^2)(18x^2).
  7. Simplify Expression: Simplify the expression by distributing and combining like terms: f(x)=(4)(6x3)+(4)(10)+(18x)(6x3)+(18x)(10)5(18x2)4x(18x2)9x2(18x2)f'(x) = (-4)(6x^3) + (-4)(10) + (-18x)(6x^3) + (-18x)(10) - 5(18x^2) - 4x(18x^2) - 9x^2(18x^2).
  8. Combine Like Terms: Continue simplifying: f(x)=24x340108x4180x90x272x3162x4f'(x) = -24x^3 - 40 - 108x^4 - 180x - 90x^2 - 72x^3 - 162x^4.
  9. Final Result: Combine like terms: f(x)=108x4162x424x372x390x2180x40f'(x) = -108x^4 - 162x^4 - 24x^3 - 72x^3 - 90x^2 - 180x - 40.
  10. Final Result: Combine like terms: f(x)=108x4162x424x372x390x2180x40f'(x) = -108x^4 - 162x^4 - 24x^3 - 72x^3 - 90x^2 - 180x - 40.Finish combining like terms: f(x)=270x496x390x2180x40f'(x) = -270x^4 - 96x^3 - 90x^2 - 180x - 40.

More problems from Find derivatives of using multiple formulae