Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given the function 
f(x)=(-5-4x^(-2))(x^(2)+6+6x), find 
f^(')(x) in any form.
Answer: 
f^(')(x)=

Given the function f(x)=(54x2)(x2+6+6x) f(x)=\left(-5-4 x^{-2}\right)\left(x^{2}+6+6 x\right) , find f(x) f^{\prime}(x) in any form.\newlineAnswer: f(x)= f^{\prime}(x)=

Full solution

Q. Given the function f(x)=(54x2)(x2+6+6x) f(x)=\left(-5-4 x^{-2}\right)\left(x^{2}+6+6 x\right) , find f(x) f^{\prime}(x) in any form.\newlineAnswer: f(x)= f^{\prime}(x)=
  1. Product Rule Application: To find the derivative of the function f(x)=(54x2)(x2+6+6x)f(x) = (-5 - 4x^{-2})(x^2 + 6 + 6x), we will use the product rule. The product rule states that the derivative of a product of two functions is the derivative of the first function times the second function plus the first function times the derivative of the second function.
  2. Derivative of u(x)u(x): Let's denote the two functions as u(x)=54x2u(x) = -5 - 4x^{-2} and v(x)=x2+6+6xv(x) = x^2 + 6 + 6x. We will first find the derivative of u(x)u(x) with respect to xx. The derivative of a constant is 00, and the derivative of 4x2-4x^{-2} is 8x38x^{-3} using the power rule, which states that (d/dx)(xn)=nxn1(d/dx)(x^n) = nx^{n-1}. So, (d/dx)(u(x))=(d/dx)(5)+(d/dx)(4x2)=0+8x3(d/dx)(u(x)) = (d/dx)(-5) + (d/dx)(-4x^{-2}) = 0 + 8x^{-3}.
  3. Derivative of v(x)v(x): Next, we will find the derivative of v(x)v(x) with respect to xx. The derivative of x2x^2 is 2x2x, the derivative of 66 is 00, and the derivative of 6x6x is 66 using the power rule and the fact that the derivative of a constant is 00. So, v(x)v(x)00.
  4. Applying Product Rule to Find f(x)f'(x): Now we can apply the product rule to find f(x)f'(x).
    f(x)=u(x)v(x)+u(x)v(x)f'(x) = u'(x)v(x) + u(x)v'(x)
    f(x)=(8x3)(x2+6+6x)+(54x2)(2x+6)f'(x) = (8x^{-3})(x^2 + 6 + 6x) + (-5 - 4x^{-2})(2x + 6).
  5. Simplifying f(x)f'(x) Expression: We will now simplify the expression for f(x)f'(x). First, distribute 8x38x^{-3} across (x2+6+6x)(x^2 + 6 + 6x): 8x3x2+8x36+8x36x=8x1+48x3+48x28x^{-3}x^2 + 8x^{-3}6 + 8x^{-3}6x = 8x^{-1} + 48x^{-3} + 48x^{-2}.
  6. Simplifying f(x)f'(x) Expression: We will now simplify the expression for f(x)f'(x). First, distribute 8x38x^{-3} across (x2+6+6x)(x^2 + 6 + 6x): 8x3x2+8x36+8x36x=8x1+48x3+48x28x^{-3}x^2 + 8x^{-3}6 + 8x^{-3}6x = 8x^{-1} + 48x^{-3} + 48x^{-2}.Next, distribute (54x2)(-5 - 4x^{-2}) across (2x+6)(2x + 6): 5(2x)5(6)4x2(2x)4x2(6)=10x308x124x2-5(2x) - 5(6) - 4x^{-2}(2x) - 4x^{-2}(6) = -10x - 30 - 8x^{-1} - 24x^{-2}.
  7. Simplifying f(x)f'(x) Expression: We will now simplify the expression for f(x)f'(x). First, distribute 8x38x^{-3} across (x2+6+6x)(x^2 + 6 + 6x): 8x3x2+8x36+8x36x=8x1+48x3+48x28x^{-3}x^2 + 8x^{-3}6 + 8x^{-3}6x = 8x^{-1} + 48x^{-3} + 48x^{-2}.Next, distribute (54x2)(-5 - 4x^{-2}) across (2x+6)(2x + 6): 5(2x)5(6)4x2(2x)4x2(6)=10x308x124x2-5(2x) - 5(6) - 4x^{-2}(2x) - 4x^{-2}(6) = -10x - 30 - 8x^{-1} - 24x^{-2}.Now we combine like terms to get the final expression for f(x)f'(x): f(x)=8x1+48x3+48x210x308x124x2f'(x) = 8x^{-1} + 48x^{-3} + 48x^{-2} - 10x - 30 - 8x^{-1} - 24x^{-2}. f(x)f'(x)00.

More problems from Find derivatives of using multiple formulae