Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given the function 
f(x)=(-4-6x^(3))(-9x^(3)-4x^(2)+5), find 
f^(')(x) in any form.
Answer: 
f^(')(x)=

Given the function f(x)=(46x3)(9x34x2+5) f(x)=\left(-4-6 x^{3}\right)\left(-9 x^{3}-4 x^{2}+5\right) , find f(x) f^{\prime}(x) in any form.\newlineAnswer: f(x)= f^{\prime}(x)=

Full solution

Q. Given the function f(x)=(46x3)(9x34x2+5) f(x)=\left(-4-6 x^{3}\right)\left(-9 x^{3}-4 x^{2}+5\right) , find f(x) f^{\prime}(x) in any form.\newlineAnswer: f(x)= f^{\prime}(x)=
  1. Apply Product Rule: To find the derivative of the function f(x)=(46x3)(9x34x2+5)f(x) = (-4-6x^{3})(-9x^{3}-4x^{2}+5), we will use the product rule. The product rule states that the derivative of a product of two functions is the derivative of the first function times the second function plus the first function times the derivative of the second function.
  2. Find Derivatives: Let's denote the first function as u(x)=46x3u(x) = -4-6x^{3} and the second function as v(x)=9x34x2+5v(x) = -9x^{3}-4x^{2}+5. We need to find the derivatives u(x)u'(x) and v(x)v'(x).
  3. Distribute Terms: First, we find the derivative of u(x)=46x3u(x) = -4-6x^{3}. The derivative of a constant is 00, and the derivative of 6x3-6x^{3} is 18x2-18x^{2}. So, u(x)=018x2=18x2u'(x) = 0 - 18x^{2} = -18x^{2}.
  4. Simplify Expressions: Next, we find the derivative of v(x)=9x34x2+5v(x) = -9x^{3}-4x^{2}+5. The derivative of 9x3-9x^{3} is 27x2-27x^{2}, the derivative of 4x2-4x^{2} is 8x-8x, and the derivative of a constant is 00. So, v(x)=27x28xv'(x) = -27x^{2} - 8x.
  5. Combine Like Terms: Now we apply the product rule: f(x)=u(x)v(x)+u(x)v(x)f'(x) = u'(x)v(x) + u(x)v'(x). Substituting the derivatives we found, we get f(x)=(18x2)(9x34x2+5)+(46x3)(27x28x)f'(x) = (-18x^{2})(-9x^{3}-4x^{2}+5) + (-4-6x^{3})(-27x^{2} - 8x).
  6. Combine Like Terms: Now we apply the product rule: f(x)=u(x)v(x)+u(x)v(x)f'(x) = u'(x)v(x) + u(x)v'(x). Substituting the derivatives we found, we get f(x)=(18x2)(9x34x2+5)+(46x3)(27x28x)f'(x) = (-18x^{2})(-9x^{3}-4x^{2}+5) + (-4-6x^{3})(-27x^{2} - 8x).We need to distribute the terms in the expression f(x)=(18x2)(9x34x2+5)+(46x3)(27x28x)f'(x) = (-18x^{2})(-9x^{3}-4x^{2}+5) + (-4-6x^{3})(-27x^{2} - 8x). Let's do this step by step.
  7. Combine Like Terms: Now we apply the product rule: f(x)=u(x)v(x)+u(x)v(x)f'(x) = u'(x)v(x) + u(x)v'(x). Substituting the derivatives we found, we get f(x)=(18x2)(9x34x2+5)+(46x3)(27x28x)f'(x) = (-18x^{2})(-9x^{3}-4x^{2}+5) + (-4-6x^{3})(-27x^{2} - 8x).We need to distribute the terms in the expression f(x)=(18x2)(9x34x2+5)+(46x3)(27x28x)f'(x) = (-18x^{2})(-9x^{3}-4x^{2}+5) + (-4-6x^{3})(-27x^{2} - 8x). Let's do this step by step.First, distribute 18x2-18x^{2} across the terms in the first parenthesis: f(x)=(18x2)(9x3)+(18x2)(4x2)+(18x2)(5)f'(x) = (-18x^{2})(-9x^{3}) + (-18x^{2})(-4x^{2}) + (-18x^{2})(5).
  8. Combine Like Terms: Now we apply the product rule: f(x)=u(x)v(x)+u(x)v(x)f'(x) = u'(x)v(x) + u(x)v'(x). Substituting the derivatives we found, we get f(x)=(18x2)(9x34x2+5)+(46x3)(27x28x)f'(x) = (-18x^{2})(-9x^{3}-4x^{2}+5) + (-4-6x^{3})(-27x^{2} - 8x).We need to distribute the terms in the expression f(x)=(18x2)(9x34x2+5)+(46x3)(27x28x)f'(x) = (-18x^{2})(-9x^{3}-4x^{2}+5) + (-4-6x^{3})(-27x^{2} - 8x). Let's do this step by step.First, distribute 18x2-18x^{2} across the terms in the first parenthesis: f(x)=(18x2)(9x3)+(18x2)(4x2)+(18x2)(5)f'(x) = (-18x^{2})(-9x^{3}) + (-18x^{2})(-4x^{2}) + (-18x^{2})(5).Now, distribute 4-4 and 6x3-6x^{3} across the terms in the second parenthesis: f(x)=f(x)+(4)(27x2)+(4)(8x)+(6x3)(27x2)+(6x3)(8x)f'(x) = f'(x) + (-4)(-27x^{2}) + (-4)(-8x) + (-6x^{3})(-27x^{2}) + (-6x^{3})(-8x).
  9. Combine Like Terms: Now we apply the product rule: f(x)=u(x)v(x)+u(x)v(x)f'(x) = u'(x)v(x) + u(x)v'(x). Substituting the derivatives we found, we get f(x)=(18x2)(9x34x2+5)+(46x3)(27x28x)f'(x) = (-18x^{2})(-9x^{3}-4x^{2}+5) + (-4-6x^{3})(-27x^{2} - 8x).We need to distribute the terms in the expression f(x)=(18x2)(9x34x2+5)+(46x3)(27x28x)f'(x) = (-18x^{2})(-9x^{3}-4x^{2}+5) + (-4-6x^{3})(-27x^{2} - 8x). Let's do this step by step.First, distribute 18x2-18x^{2} across the terms in the first parenthesis: f(x)=(18x2)(9x3)+(18x2)(4x2)+(18x2)(5)f'(x) = (-18x^{2})(-9x^{3}) + (-18x^{2})(-4x^{2}) + (-18x^{2})(5).Now, distribute 4-4 and 6x3-6x^{3} across the terms in the second parenthesis: f(x)=f(x)+(4)(27x2)+(4)(8x)+(6x3)(27x2)+(6x3)(8x)f'(x) = f'(x) + (-4)(-27x^{2}) + (-4)(-8x) + (-6x^{3})(-27x^{2}) + (-6x^{3})(-8x).Let's simplify the terms we have so far: f(x)=162x5+72x490x2+108x2+32x162x548x4f'(x) = 162x^{5} + 72x^{4} - 90x^{2} + 108x^{2} + 32x - 162x^{5} - 48x^{4}.
  10. Combine Like Terms: Now we apply the product rule: f(x)=u(x)v(x)+u(x)v(x)f'(x) = u'(x)v(x) + u(x)v'(x). Substituting the derivatives we found, we get f(x)=(18x2)(9x34x2+5)+(46x3)(27x28x)f'(x) = (-18x^{2})(-9x^{3}-4x^{2}+5) + (-4-6x^{3})(-27x^{2} - 8x).We need to distribute the terms in the expression f(x)=(18x2)(9x34x2+5)+(46x3)(27x28x)f'(x) = (-18x^{2})(-9x^{3}-4x^{2}+5) + (-4-6x^{3})(-27x^{2} - 8x). Let's do this step by step.First, distribute 18x2-18x^{2} across the terms in the first parenthesis: f(x)=(18x2)(9x3)+(18x2)(4x2)+(18x2)(5)f'(x) = (-18x^{2})(-9x^{3}) + (-18x^{2})(-4x^{2}) + (-18x^{2})(5).Now, distribute 4-4 and 6x3-6x^{3} across the terms in the second parenthesis: f(x)=f(x)+(4)(27x2)+(4)(8x)+(6x3)(27x2)+(6x3)(8x)f'(x) = f'(x) + (-4)(-27x^{2}) + (-4)(-8x) + (-6x^{3})(-27x^{2}) + (-6x^{3})(-8x).Let's simplify the terms we have so far: f(x)=162x5+72x490x2+108x2+32x162x548x4f'(x) = 162x^{5} + 72x^{4} - 90x^{2} + 108x^{2} + 32x - 162x^{5} - 48x^{4}.Combine like terms to get the final derivative: f(x)=162x5162x5+72x448x490x2+108x2+32xf'(x) = 162x^{5} - 162x^{5} + 72x^{4} - 48x^{4} - 90x^{2} + 108x^{2} + 32x.
  11. Combine Like Terms: Now we apply the product rule: f(x)=u(x)v(x)+u(x)v(x)f'(x) = u'(x)v(x) + u(x)v'(x). Substituting the derivatives we found, we get f(x)=(18x2)(9x34x2+5)+(46x3)(27x28x)f'(x) = (-18x^{2})(-9x^{3}-4x^{2}+5) + (-4-6x^{3})(-27x^{2} - 8x).We need to distribute the terms in the expression f(x)=(18x2)(9x34x2+5)+(46x3)(27x28x)f'(x) = (-18x^{2})(-9x^{3}-4x^{2}+5) + (-4-6x^{3})(-27x^{2} - 8x). Let's do this step by step.First, distribute 18x2-18x^{2} across the terms in the first parenthesis: f(x)=(18x2)(9x3)+(18x2)(4x2)+(18x2)(5)f'(x) = (-18x^{2})(-9x^{3}) + (-18x^{2})(-4x^{2}) + (-18x^{2})(5).Now, distribute 4-4 and 6x3-6x^{3} across the terms in the second parenthesis: f(x)=f(x)+(4)(27x2)+(4)(8x)+(6x3)(27x2)+(6x3)(8x)f'(x) = f'(x) + (-4)(-27x^{2}) + (-4)(-8x) + (-6x^{3})(-27x^{2}) + (-6x^{3})(-8x).Let's simplify the terms we have so far: f(x)=162x5+72x490x2+108x2+32x162x548x4f'(x) = 162x^{5} + 72x^{4} - 90x^{2} + 108x^{2} + 32x - 162x^{5} - 48x^{4}.Combine like terms to get the final derivative: f(x)=162x5162x5+72x448x490x2+108x2+32xf'(x) = 162x^{5} - 162x^{5} + 72x^{4} - 48x^{4} - 90x^{2} + 108x^{2} + 32x.After combining like terms, we get f(x)=(18x2)(9x34x2+5)+(46x3)(27x28x)f'(x) = (-18x^{2})(-9x^{3}-4x^{2}+5) + (-4-6x^{3})(-27x^{2} - 8x)00.

More problems from Find derivatives of using multiple formulae