Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given the function 
f(x)=(2x^(3)-7)(-4x^(3)+10-3x), find 
f^(')(x) in any form.
Answer: 
f^(')(x)=

Given the function f(x)=(2x37)(4x3+103x) f(x)=\left(2 x^{3}-7\right)\left(-4 x^{3}+10-3 x\right) , find f(x) f^{\prime}(x) in any form.\newlineAnswer: f(x)= f^{\prime}(x)=

Full solution

Q. Given the function f(x)=(2x37)(4x3+103x) f(x)=\left(2 x^{3}-7\right)\left(-4 x^{3}+10-3 x\right) , find f(x) f^{\prime}(x) in any form.\newlineAnswer: f(x)= f^{\prime}(x)=
  1. Apply Product Rule: To find the derivative of the function f(x)=(2x37)(4x3+103x)f(x)=(2x^{3}-7)(-4x^{3}+10-3x), we will use the product rule. The product rule states that the derivative of a product of two functions is the derivative of the first function times the second function plus the first function times the derivative of the second function.
  2. Define Functions: Let's denote the first function as u(x)=2x37u(x) = 2x^3 - 7 and the second function as v(x)=4x3+103xv(x) = -4x^3 + 10 - 3x. We will find the derivatives of u(x)u(x) and v(x)v(x) separately.
  3. Find u(x)u'(x): The derivative of u(x)=2x37u(x) = 2x^3 - 7 with respect to xx is u(x)=ddx(2x3)ddx(7)u'(x) = \frac{d}{dx}(2x^3) - \frac{d}{dx}(7). Using the power rule, we get u(x)=32x310=6x2u'(x) = 3 \cdot 2x^{3-1} - 0 = 6x^2.
  4. Find v(x)v'(x): The derivative of v(x)=4x3+103xv(x) = -4x^3 + 10 - 3x with respect to xx is v(x)=ddx(4x3)+ddx(10)ddx(3x)v'(x) = \frac{d}{dx}(-4x^3) + \frac{d}{dx}(10) - \frac{d}{dx}(3x). Using the power rule and the fact that the derivative of a constant is zero, we get v(x)=34x3103=12x23v'(x) = -3\cdot4x^{3-1} - 0 - 3 = -12x^2 - 3.
  5. Apply Product Rule Again: Now we apply the product rule: f(x)=u(x)v(x)+u(x)v(x)f'(x) = u'(x)v(x) + u(x)v'(x). Substituting the derivatives we found, we get f(x)=(6x2)(4x3+103x)+(2x37)(12x23)f'(x) = (6x^2)(-4x^3 + 10 - 3x) + (2x^3 - 7)(-12x^2 - 3).
  6. Expand Terms: We will now expand the terms: f(x)=(6x2)(4x3)+(6x2)(10)(6x2)(3x)+(2x3)(12x2)(2x3)(3)(7)(12x2)(7)(3).f'(x) = (6x^2)(-4x^3) + (6x^2)(10) - (6x^2)(3x) + (2x^3)(-12x^2) - (2x^3)(3) - (7)(-12x^2) - (7)(-3).
  7. Simplify Terms: Simplifying the terms, we get f(x)=24x5+60x218x324x56x3+84x2+21f'(x) = -24x^5 + 60x^2 - 18x^3 - 24x^5 - 6x^3 + 84x^2 + 21.
  8. Combine Like Terms: Combining like terms, we get f(x)=48x524x3+144x2+21f'(x) = -48x^5 - 24x^3 + 144x^2 + 21.

More problems from Find derivatives of using multiple formulae