Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given that 
f(x)=x-1,quad g(x)=3x and 
h(x)=f(x-1)+3g(x-2), then what is the value of 
h(1) ?
Answer:

Given that f(x)=x1,g(x)=3x f(x)=x-1, \quad g(x)=3 x and h(x)=f(x1)+3g(x2) h(x)=f(x-1)+3 g(x-2) , then what is the value of h(1) h(1) ?\newlineAnswer:

Full solution

Q. Given that f(x)=x1,g(x)=3x f(x)=x-1, \quad g(x)=3 x and h(x)=f(x1)+3g(x2) h(x)=f(x-1)+3 g(x-2) , then what is the value of h(1) h(1) ?\newlineAnswer:
  1. Find f(x1)f(x-1) at x=1x=1: First, we need to find the value of f(x1)f(x-1) when x=1x=1.
    f(x)=x1f(x) = x - 1
    f(11)=f(0)=01=1f(1 - 1) = f(0) = 0 - 1 = -1
  2. Calculate g(x2)g(x-2) at x=1x=1: Next, we calculate the value of g(x2)g(x-2) when x=1x=1.
    g(x)=3xg(x) = 3x
    g(12)=g(1)=3(1)=3g(1 - 2) = g(-1) = 3(-1) = -3
  3. Find 3g(x2)3g(x-2) at x=1x=1: Now, we need to find the value of 3g(x2)3g(x-2) when x=1x=1. \newline3g(x2)=3×g(1)=3×(3)=93g(x-2) = 3 \times g(-1) = 3 \times (-3) = -9
  4. Find h(x)h(x) at x=1x=1: Finally, we can find the value of h(x)h(x) when x=1x=1.
    h(x)=f(x1)+3g(x2)h(x) = f(x-1) + 3g(x-2)
    h(1)=f(0)+3g(1)=1+(9)=10h(1) = f(0) + 3g(-1) = -1 + (-9) = -10

More problems from Solve multi-step linear equations