Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

g(x)=2x1 g(x) = 2^{x} - 1 for -8 \leq x < 1 ; x \sqrt{x} for x1 x \geq 1 \newlineFind limx4g(x) \lim_{x \to 4} g(x) .

Full solution

Q. g(x)=2x1 g(x) = 2^{x} - 1 for 8x<1 -8 \leq x < 1 ; x \sqrt{x} for x1 x \geq 1 \newlineFind limx4g(x) \lim_{x \to 4} g(x) .
  1. Identify Function Piece: Since xx is approaching 44, we look at the piece of the function that applies when xx is greater than or equal to 11, which is x\sqrt{x}.
  2. Substitute x=4x=4: Now we just plug in 44 into x\sqrt{x} to find the limit.
  3. Calculate Limit: So, limx4g(x)=4.\lim_{x \to 4} g(x) = \sqrt{4}.
  4. Final Result: Calculating 4\sqrt{4} gives us 22.

More problems from Find derivatives using the quotient rule II