Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
For the function
f
(
x
)
=
x
−
9
7
−
2
x
f(x)=\frac{x-9}{7-2 x}
f
(
x
)
=
7
−
2
x
x
−
9
, find
f
−
1
(
x
)
f^{-1}(x)
f
−
1
(
x
)
.
\newline
Answer:
f
−
1
(
x
)
=
f^{-1}(x)=
f
−
1
(
x
)
=
View step-by-step help
Home
Math Problems
Algebra 2
Simplify variable expressions using properties
Full solution
Q.
For the function
f
(
x
)
=
x
−
9
7
−
2
x
f(x)=\frac{x-9}{7-2 x}
f
(
x
)
=
7
−
2
x
x
−
9
, find
f
−
1
(
x
)
f^{-1}(x)
f
−
1
(
x
)
.
\newline
Answer:
f
−
1
(
x
)
=
f^{-1}(x)=
f
−
1
(
x
)
=
Replace with
y
y
y
:
To find the inverse function,
f
−
1
(
x
)
f^{-1}(x)
f
−
1
(
x
)
, we first replace
f
(
x
)
f(x)
f
(
x
)
with
y
y
y
for easier manipulation.
\newline
So, we have
y
=
x
−
9
7
−
2
x
y = \frac{x - 9}{7 - 2x}
y
=
7
−
2
x
x
−
9
.
Swap
x
x
x
and
y
y
y
:
Next, we swap
x
x
x
and
y
y
y
to find the inverse. This gives us
x
=
y
−
9
7
−
2
y
x = \frac{y - 9}{7 - 2y}
x
=
7
−
2
y
y
−
9
.
Solve for
y
y
y
:
Now, we solve for
y
y
y
. Multiply both sides by
(
7
−
2
y
)
(7 - 2y)
(
7
−
2
y
)
to get rid of the
fraction
.
\newline
x
⋅
(
7
−
2
y
)
=
y
−
9
x \cdot (7 - 2y) = y - 9
x
⋅
(
7
−
2
y
)
=
y
−
9
.
Distribute
x
x
x
:
Distribute
x
x
x
on the left side to get
7
x
−
2
x
y
=
y
−
9
7x - 2xy = y - 9
7
x
−
2
x
y
=
y
−
9
.
Get
y
y
y
terms together:
To solve for
y
y
y
, we need to get all the
y
y
y
terms on one side. Add
2
x
y
2xy
2
x
y
to both sides and add
9
9
9
to both sides to get
7
x
+
9
=
y
+
2
x
y
7x + 9 = y + 2xy
7
x
+
9
=
y
+
2
x
y
.
Factor out
y
y
y
:
Factor out
y
y
y
on the right side to get
7
x
+
9
=
y
(
1
+
2
x
)
7x + 9 = y(1 + 2x)
7
x
+
9
=
y
(
1
+
2
x
)
.
Isolate
y
y
y
:
Now, divide both sides by
(
1
+
2
x
)
(1 + 2x)
(
1
+
2
x
)
to isolate
y
y
y
.
\newline
y
=
7
x
+
9
1
+
2
x
y = \frac{7x + 9}{1 + 2x}
y
=
1
+
2
x
7
x
+
9
.
Final Inverse Function:
We have found the inverse function. Therefore,
f
−
1
(
x
)
=
7
x
+
9
1
+
2
x
f^{-1}(x) = \frac{7x + 9}{1 + 2x}
f
−
1
(
x
)
=
1
+
2
x
7
x
+
9
.
More problems from Simplify variable expressions using properties
Question
Combine the like terms to create an equivalent expression:
\newline
2
s
+
(
−
4
s
)
=
0
2s+(-4s)=\boxed{\phantom{0}}
2
s
+
(
−
4
s
)
=
0
Get tutor help
Posted 1 year ago
Question
Combine the like terms to create an equivalent expression:
\newline
−
4
p
+
(
−
6
p
)
=
□
-4p+(-6p)=\square
−
4
p
+
(
−
6
p
)
=
□
Get tutor help
Posted 1 year ago
Question
Combine the like terms to create an equivalent expression:
\newline
4
z
−
(
−
3
z
)
=
□
4z-(-3z)=\square
4
z
−
(
−
3
z
)
=
□
Get tutor help
Posted 1 year ago
Question
Combine the like terms to create an equivalent expression:
\newline
r
+
(
−
5
r
)
=
0
r+(-5r)=\boxed{\phantom{0}}
r
+
(
−
5
r
)
=
0
Get tutor help
Posted 1 year ago
Question
Combine the like terms to create an equivalent expression:
\newline
−
4
p
+
(
−
2
)
+
2
p
+
3
=
-4p+(-2)+2p+3=
−
4
p
+
(
−
2
)
+
2
p
+
3
=
Get tutor help
Posted 1 year ago
Question
Rewrite the expression in the form
k
⋅
z
n
k \cdot z^{n}
k
⋅
z
n
.
\newline
Write the exponent as an integer, fraction, or an exact decimal (not a mixed number).
\newline
3
z
4
⋅
3
z
3
4
=
3 \sqrt[4]{z} \cdot 3 z^{\frac{3}{4}}=
3
4
z
⋅
3
z
4
3
=
Get tutor help
Posted 1 year ago
Question
Let
y
=
3
x
y=3^{x}
y
=
3
x
.
\newline
Find
d
2
y
d
x
2
\frac{d^{2} y}{d x^{2}}
d
x
2
d
2
y
\newline
d
2
y
d
x
2
=
\frac{d^{2} y}{d x^{2}}=
d
x
2
d
2
y
=
Get tutor help
Posted 1 year ago
Question
Let
y
=
4
x
2
+
3
x
2
x
−
7
y=\frac{4 x^{2}+3 x}{2 x-7}
y
=
2
x
−
7
4
x
2
+
3
x
.
\newline
d
y
d
x
=
\frac{d y}{d x}=
d
x
d
y
=
Get tutor help
Posted 1 year ago
Question
d
d
x
(
e
x
cos
(
x
)
)
=
\frac{d}{d x}\left(\frac{e^{x}}{\cos (x)}\right)=
d
x
d
(
c
o
s
(
x
)
e
x
)
=
Get tutor help
Posted 9 months ago
Question
Let
f
(
x
)
=
1
x
2
f(x)=\frac{1}{x^{2}}
f
(
x
)
=
x
2
1
.
\newline
f
′
(
5
)
=
f^{\prime}(5)=
f
′
(
5
)
=
Get tutor help
Posted 1 year ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant