Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

For the function 
f(x)=(x-9)/(7-2x), find 
f^(-1)(x).
Answer: 
f^(-1)(x)=

For the function f(x)=x972x f(x)=\frac{x-9}{7-2 x} , find f1(x) f^{-1}(x) .\newlineAnswer: f1(x)= f^{-1}(x)=

Full solution

Q. For the function f(x)=x972x f(x)=\frac{x-9}{7-2 x} , find f1(x) f^{-1}(x) .\newlineAnswer: f1(x)= f^{-1}(x)=
  1. Replace with yy: To find the inverse function, f1(x)f^{-1}(x), we first replace f(x)f(x) with yy for easier manipulation.\newlineSo, we have y=x972xy = \frac{x - 9}{7 - 2x}.
  2. Swap xx and yy: Next, we swap xx and yy to find the inverse. This gives us x=y972yx = \frac{y - 9}{7 - 2y}.
  3. Solve for yy: Now, we solve for yy. Multiply both sides by (72y)(7 - 2y) to get rid of the fraction.\newlinex(72y)=y9x \cdot (7 - 2y) = y - 9.
  4. Distribute xx: Distribute xx on the left side to get 7x2xy=y97x - 2xy = y - 9.
  5. Get yy terms together: To solve for yy, we need to get all the yy terms on one side. Add 2xy2xy to both sides and add 99 to both sides to get 7x+9=y+2xy7x + 9 = y + 2xy.
  6. Factor out yy: Factor out yy on the right side to get 7x+9=y(1+2x)7x + 9 = y(1 + 2x).
  7. Isolate yy: Now, divide both sides by (1+2x)(1 + 2x) to isolate yy.\newliney=7x+91+2xy = \frac{7x + 9}{1 + 2x}.
  8. Final Inverse Function: We have found the inverse function. Therefore, f1(x)=7x+91+2xf^{-1}(x) = \frac{7x + 9}{1 + 2x}.

More problems from Simplify variable expressions using properties