Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
For the function
f
(
x
)
=
(
x
−
5
7
)
1
5
f(x)=\left(\frac{x-5}{7}\right)^{\frac{1}{5}}
f
(
x
)
=
(
7
x
−
5
)
5
1
, find
f
−
1
(
x
)
f^{-1}(x)
f
−
1
(
x
)
.
\newline
f
−
1
(
x
)
=
7
x
5
+
5
f^{-1}(x)=7 x^{5}+5
f
−
1
(
x
)
=
7
x
5
+
5
\newline
f
−
1
(
x
)
=
(
7
x
+
5
)
5
f^{-1}(x)=(7 x+5)^{5}
f
−
1
(
x
)
=
(
7
x
+
5
)
5
\newline
f
−
1
(
x
)
=
7
(
x
+
5
)
5
f^{-1}(x)=7(x+5)^{5}
f
−
1
(
x
)
=
7
(
x
+
5
)
5
\newline
f
−
1
(
x
)
=
7
(
x
5
+
5
)
f^{-1}(x)=7\left(x^{5}+5\right)
f
−
1
(
x
)
=
7
(
x
5
+
5
)
View step-by-step help
Home
Math Problems
Calculus
Find derivatives of using multiple formulae
Full solution
Q.
For the function
f
(
x
)
=
(
x
−
5
7
)
1
5
f(x)=\left(\frac{x-5}{7}\right)^{\frac{1}{5}}
f
(
x
)
=
(
7
x
−
5
)
5
1
, find
f
−
1
(
x
)
f^{-1}(x)
f
−
1
(
x
)
.
\newline
f
−
1
(
x
)
=
7
x
5
+
5
f^{-1}(x)=7 x^{5}+5
f
−
1
(
x
)
=
7
x
5
+
5
\newline
f
−
1
(
x
)
=
(
7
x
+
5
)
5
f^{-1}(x)=(7 x+5)^{5}
f
−
1
(
x
)
=
(
7
x
+
5
)
5
\newline
f
−
1
(
x
)
=
7
(
x
+
5
)
5
f^{-1}(x)=7(x+5)^{5}
f
−
1
(
x
)
=
7
(
x
+
5
)
5
\newline
f
−
1
(
x
)
=
7
(
x
5
+
5
)
f^{-1}(x)=7\left(x^{5}+5\right)
f
−
1
(
x
)
=
7
(
x
5
+
5
)
Write function as
y
y
y
:
To find the inverse function, we first write the function as
y
=
(
x
−
5
7
)
1
5
y = \left(\frac{x-5}{7}\right)^{\frac{1}{5}}
y
=
(
7
x
−
5
)
5
1
.
Swap x and y:
Next, we swap x and y to get
x
=
(
y
−
5
7
)
1
5
x = \left(\frac{y-5}{7}\right)^{\frac{1}{5}}
x
=
(
7
y
−
5
)
5
1
.
Eliminate fifth root:
Now we solve for
y
y
y
. Raise both sides of the equation to the power of
5
5
5
to eliminate the fifth root:
x
5
=
(
y
−
5
)
/
7
x^5 = (y-5)/7
x
5
=
(
y
−
5
)
/7
.
Isolate term with y:
Multiply both sides by
7
7
7
to isolate the term with
y
y
y
:
7
x
5
=
y
−
5
7x^5 = y - 5
7
x
5
=
y
−
5
.
Solve for y:
Add
5
5
5
to both sides to solve for y:
7
x
5
+
5
=
y
7x^5 + 5 = y
7
x
5
+
5
=
y
.
Inverse function:
Now we have the inverse function:
f
−
1
(
x
)
=
7
x
5
+
5
f^{-1}(x) = 7x^5 + 5
f
−
1
(
x
)
=
7
x
5
+
5
.
More problems from Find derivatives of using multiple formulae
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
cos
(
x
)
f(x) = \cos(x)
f
(
x
)
=
cos
(
x
)
\newline
f
′
(
x
)
=
f'(x) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
tan
(
x
)
f(x) = \tan(x)
f
(
x
)
=
tan
(
x
)
\newline
f
′
(
x
)
=
f'(x) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
e
x
f(x) = e^x
f
(
x
)
=
e
x
\newline
f
′
(
x
)
=
f'\left(x\right) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
ln
(
x
)
f(x) = \ln(x)
f
(
x
)
=
ln
(
x
)
\newline
f
′
(
x
)
=
f'(x) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
tan
−
1
x
f(x) = \tan^{-1}{x}
f
(
x
)
=
tan
−
1
x
\newline
f
′
(
x
)
=
f'(x) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
x
e
x
f(x) = x e^x
f
(
x
)
=
x
e
x
\newline
f
′
(
x
)
=
f'\left(x\right) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
e
x
x
f(x) = \frac{e^x}{x}
f
(
x
)
=
x
e
x
\newline
f
′
(
x
)
=
f'(x) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
e
(
x
+
1
)
f(x) = e^{(x + 1)}
f
(
x
)
=
e
(
x
+
1
)
\newline
f
′
(
x
)
=
f'\left(x\right) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
x
+
3
f(x) = \sqrt{x+3}
f
(
x
)
=
x
+
3
\newline
f
′
(
x
)
=
f'(x) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
g
(
x
)
g(x)
g
(
x
)
.
\newline
g
(
x
)
=
ln
(
2
x
)
g(x) = \ln(2x)
g
(
x
)
=
ln
(
2
x
)
\newline
g
′
(
x
)
=
g^{\prime}(x) =
g
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant