Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

For the function 
f(x)=((x-5)/(7))^((1)/(5)), find 
f^(-1)(x).

f^(-1)(x)=7x^(5)+5

f^(-1)(x)=(7x+5)^(5)

f^(-1)(x)=7(x+5)^(5)

f^(-1)(x)=7(x^(5)+5)

For the function f(x)=(x57)15 f(x)=\left(\frac{x-5}{7}\right)^{\frac{1}{5}} , find f1(x) f^{-1}(x) .\newlinef1(x)=7x5+5 f^{-1}(x)=7 x^{5}+5 \newlinef1(x)=(7x+5)5 f^{-1}(x)=(7 x+5)^{5} \newlinef1(x)=7(x+5)5 f^{-1}(x)=7(x+5)^{5} \newlinef1(x)=7(x5+5) f^{-1}(x)=7\left(x^{5}+5\right)

Full solution

Q. For the function f(x)=(x57)15 f(x)=\left(\frac{x-5}{7}\right)^{\frac{1}{5}} , find f1(x) f^{-1}(x) .\newlinef1(x)=7x5+5 f^{-1}(x)=7 x^{5}+5 \newlinef1(x)=(7x+5)5 f^{-1}(x)=(7 x+5)^{5} \newlinef1(x)=7(x+5)5 f^{-1}(x)=7(x+5)^{5} \newlinef1(x)=7(x5+5) f^{-1}(x)=7\left(x^{5}+5\right)
  1. Write function as yy: To find the inverse function, we first write the function as y=(x57)15y = \left(\frac{x-5}{7}\right)^{\frac{1}{5}}.
  2. Swap x and y: Next, we swap x and y to get x=(y57)15x = \left(\frac{y-5}{7}\right)^{\frac{1}{5}}.
  3. Eliminate fifth root: Now we solve for yy. Raise both sides of the equation to the power of 55 to eliminate the fifth root: x5=(y5)/7x^5 = (y-5)/7.
  4. Isolate term with y: Multiply both sides by 77 to isolate the term with yy: 7x5=y57x^5 = y - 5.
  5. Solve for y: Add 55 to both sides to solve for y: 7x5+5=y7x^5 + 5 = y.
  6. Inverse function: Now we have the inverse function: f1(x)=7x5+5f^{-1}(x) = 7x^5 + 5.

More problems from Find derivatives of using multiple formulae