Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
For the function
f
(
x
)
=
x
5
+
6
f(x)=x^{5}+6
f
(
x
)
=
x
5
+
6
, find
f
−
1
(
x
)
f^{-1}(x)
f
−
1
(
x
)
.
\newline
f
−
1
(
x
)
=
x
5
+
6
f^{-1}(x)=\sqrt[5]{x}+6
f
−
1
(
x
)
=
5
x
+
6
\newline
f
−
1
(
x
)
=
x
5
−
6
f^{-1}(x)=\sqrt[5]{x}-6
f
−
1
(
x
)
=
5
x
−
6
\newline
f
−
1
(
x
)
=
x
+
6
5
f^{-1}(x)=\sqrt[5]{x+6}
f
−
1
(
x
)
=
5
x
+
6
\newline
f
−
1
(
x
)
=
x
−
6
5
f^{-1}(x)=\sqrt[5]{x-6}
f
−
1
(
x
)
=
5
x
−
6
View step-by-step help
Home
Math Problems
Calculus
Find derivatives of using multiple formulae
Full solution
Q.
For the function
f
(
x
)
=
x
5
+
6
f(x)=x^{5}+6
f
(
x
)
=
x
5
+
6
, find
f
−
1
(
x
)
f^{-1}(x)
f
−
1
(
x
)
.
\newline
f
−
1
(
x
)
=
x
5
+
6
f^{-1}(x)=\sqrt[5]{x}+6
f
−
1
(
x
)
=
5
x
+
6
\newline
f
−
1
(
x
)
=
x
5
−
6
f^{-1}(x)=\sqrt[5]{x}-6
f
−
1
(
x
)
=
5
x
−
6
\newline
f
−
1
(
x
)
=
x
+
6
5
f^{-1}(x)=\sqrt[5]{x+6}
f
−
1
(
x
)
=
5
x
+
6
\newline
f
−
1
(
x
)
=
x
−
6
5
f^{-1}(x)=\sqrt[5]{x-6}
f
−
1
(
x
)
=
5
x
−
6
Replace with
y
y
y
:
To find the inverse function,
f
−
1
(
x
)
f^{-1}(x)
f
−
1
(
x
)
, we need to replace
f
(
x
)
f(x)
f
(
x
)
with
y
y
y
and solve for
x
x
x
in terms of
y
y
y
. So, we start with
y
=
x
5
+
6
y = x^5 + 6
y
=
x
5
+
6
.
Isolate
x
x
x
:
Next, we need to isolate
x
x
x
on one side of the equation. To do this, we subtract
6
6
6
from both sides of the equation to get
y
−
6
=
x
5
y - 6 = x^5
y
−
6
=
x
5
.
Take fifth root:
Now, we take the fifth root of both sides to solve for
x
x
x
. This gives us
x
=
(
y
−
6
)
1
5
x = (y - 6)^{\frac{1}{5}}
x
=
(
y
−
6
)
5
1
.
Express inverse function:
Finally, we replace
y
y
y
with
f
−
1
(
x
)
f^{-1}(x)
f
−
1
(
x
)
to express the inverse function. So,
f
−
1
(
x
)
=
(
x
−
6
)
1
5
f^{-1}(x) = (x - 6)^{\frac{1}{5}}
f
−
1
(
x
)
=
(
x
−
6
)
5
1
.
More problems from Find derivatives of using multiple formulae
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
cos
(
x
)
f(x) = \cos(x)
f
(
x
)
=
cos
(
x
)
\newline
f
′
(
x
)
=
f'(x) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
tan
(
x
)
f(x) = \tan(x)
f
(
x
)
=
tan
(
x
)
\newline
f
′
(
x
)
=
f'(x) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
e
x
f(x) = e^x
f
(
x
)
=
e
x
\newline
f
′
(
x
)
=
f'\left(x\right) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
ln
(
x
)
f(x) = \ln(x)
f
(
x
)
=
ln
(
x
)
\newline
f
′
(
x
)
=
f'(x) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
tan
−
1
x
f(x) = \tan^{-1}{x}
f
(
x
)
=
tan
−
1
x
\newline
f
′
(
x
)
=
f'(x) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
x
e
x
f(x) = x e^x
f
(
x
)
=
x
e
x
\newline
f
′
(
x
)
=
f'\left(x\right) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
e
x
x
f(x) = \frac{e^x}{x}
f
(
x
)
=
x
e
x
\newline
f
′
(
x
)
=
f'(x) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
e
(
x
+
1
)
f(x) = e^{(x + 1)}
f
(
x
)
=
e
(
x
+
1
)
\newline
f
′
(
x
)
=
f'\left(x\right) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
x
+
3
f(x) = \sqrt{x+3}
f
(
x
)
=
x
+
3
\newline
f
′
(
x
)
=
f'(x) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
g
(
x
)
g(x)
g
(
x
)
.
\newline
g
(
x
)
=
ln
(
2
x
)
g(x) = \ln(2x)
g
(
x
)
=
ln
(
2
x
)
\newline
g
′
(
x
)
=
g^{\prime}(x) =
g
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant