Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

For the function 
f(x)=x^(5)+6, find 
f^(-1)(x).

f^(-1)(x)=root(5)(x)+6

f^(-1)(x)=root(5)(x)-6

f^(-1)(x)=root(5)(x+6)

f^(-1)(x)=root(5)(x-6)

For the function f(x)=x5+6 f(x)=x^{5}+6 , find f1(x) f^{-1}(x) .\newlinef1(x)=x5+6 f^{-1}(x)=\sqrt[5]{x}+6 \newlinef1(x)=x56 f^{-1}(x)=\sqrt[5]{x}-6 \newlinef1(x)=x+65 f^{-1}(x)=\sqrt[5]{x+6} \newlinef1(x)=x65 f^{-1}(x)=\sqrt[5]{x-6}

Full solution

Q. For the function f(x)=x5+6 f(x)=x^{5}+6 , find f1(x) f^{-1}(x) .\newlinef1(x)=x5+6 f^{-1}(x)=\sqrt[5]{x}+6 \newlinef1(x)=x56 f^{-1}(x)=\sqrt[5]{x}-6 \newlinef1(x)=x+65 f^{-1}(x)=\sqrt[5]{x+6} \newlinef1(x)=x65 f^{-1}(x)=\sqrt[5]{x-6}
  1. Replace with yy: To find the inverse function, f1(x)f^{-1}(x), we need to replace f(x)f(x) with yy and solve for xx in terms of yy. So, we start with y=x5+6y = x^5 + 6.
  2. Isolate xx: Next, we need to isolate xx on one side of the equation. To do this, we subtract 66 from both sides of the equation to get y6=x5y - 6 = x^5.
  3. Take fifth root: Now, we take the fifth root of both sides to solve for xx. This gives us x=(y6)15x = (y - 6)^{\frac{1}{5}}.
  4. Express inverse function: Finally, we replace yy with f1(x)f^{-1}(x) to express the inverse function. So, f1(x)=(x6)15f^{-1}(x) = (x - 6)^{\frac{1}{5}}.

More problems from Find derivatives of using multiple formulae