Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

For the function 
f(x)=x^(5)-10, find 
f^(-1)(x).

f^(-1)(x)=(x+10)^(5)

f^(-1)(x)=root(5)(x-10)

f^(-1)(x)=root(5)(x+10)

f^(-1)(x)=x^(5)+10

For the function f(x)=x510 f(x)=x^{5}-10 , find f1(x) f^{-1}(x) .\newlinef1(x)=(x+10)5 f^{-1}(x)=(x+10)^{5} \newlinef1(x)=x105 f^{-1}(x)=\sqrt[5]{x-10} \newlinef1(x)=x+105 f^{-1}(x)=\sqrt[5]{x+10} \newlinef1(x)=x5+10 f^{-1}(x)=x^{5}+10

Full solution

Q. For the function f(x)=x510 f(x)=x^{5}-10 , find f1(x) f^{-1}(x) .\newlinef1(x)=(x+10)5 f^{-1}(x)=(x+10)^{5} \newlinef1(x)=x105 f^{-1}(x)=\sqrt[5]{x-10} \newlinef1(x)=x+105 f^{-1}(x)=\sqrt[5]{x+10} \newlinef1(x)=x5+10 f^{-1}(x)=x^{5}+10
  1. Replace with yy: To find the inverse function, we first replace f(x)f(x) with yy:y=x510y = x^5 - 10
  2. Add 1010: Next, we solve for xx in terms of yy to find the inverse function. We start by adding 1010 to both sides of the equation:\newliney+10=x5y + 10 = x^5
  3. Take fifth root: Now, we take the fifth root of both sides to solve for xx:x=(y+10)15x = (y + 10)^{\frac{1}{5}}
  4. Express as inverse function: We then replace xx with f1(x)f^{-1}(x) and yy with xx to express the inverse function: f1(x)=(x+10)15f^{-1}(x) = (x + 10)^{\frac{1}{5}}

More problems from Find derivatives of using multiple formulae