Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
For the function
f
(
x
)
=
x
5
−
10
f(x)=x^{5}-10
f
(
x
)
=
x
5
−
10
, find
f
−
1
(
x
)
f^{-1}(x)
f
−
1
(
x
)
.
\newline
f
−
1
(
x
)
=
(
x
+
10
)
5
f^{-1}(x)=(x+10)^{5}
f
−
1
(
x
)
=
(
x
+
10
)
5
\newline
f
−
1
(
x
)
=
x
−
10
5
f^{-1}(x)=\sqrt[5]{x-10}
f
−
1
(
x
)
=
5
x
−
10
\newline
f
−
1
(
x
)
=
x
+
10
5
f^{-1}(x)=\sqrt[5]{x+10}
f
−
1
(
x
)
=
5
x
+
10
\newline
f
−
1
(
x
)
=
x
5
+
10
f^{-1}(x)=x^{5}+10
f
−
1
(
x
)
=
x
5
+
10
View step-by-step help
Home
Math Problems
Calculus
Find derivatives of using multiple formulae
Full solution
Q.
For the function
f
(
x
)
=
x
5
−
10
f(x)=x^{5}-10
f
(
x
)
=
x
5
−
10
, find
f
−
1
(
x
)
f^{-1}(x)
f
−
1
(
x
)
.
\newline
f
−
1
(
x
)
=
(
x
+
10
)
5
f^{-1}(x)=(x+10)^{5}
f
−
1
(
x
)
=
(
x
+
10
)
5
\newline
f
−
1
(
x
)
=
x
−
10
5
f^{-1}(x)=\sqrt[5]{x-10}
f
−
1
(
x
)
=
5
x
−
10
\newline
f
−
1
(
x
)
=
x
+
10
5
f^{-1}(x)=\sqrt[5]{x+10}
f
−
1
(
x
)
=
5
x
+
10
\newline
f
−
1
(
x
)
=
x
5
+
10
f^{-1}(x)=x^{5}+10
f
−
1
(
x
)
=
x
5
+
10
Replace with
y
y
y
:
To find the inverse function, we first replace
f
(
x
)
f(x)
f
(
x
)
with
y
y
y
:
y
=
x
5
−
10
y = x^5 - 10
y
=
x
5
−
10
Add
10
10
10
:
Next, we solve for
x
x
x
in terms of
y
y
y
to find the inverse function. We start by adding
10
10
10
to both sides of the equation:
\newline
y
+
10
=
x
5
y + 10 = x^5
y
+
10
=
x
5
Take fifth root:
Now, we take the fifth root of both sides to solve for
x
x
x
:
x
=
(
y
+
10
)
1
5
x = (y + 10)^{\frac{1}{5}}
x
=
(
y
+
10
)
5
1
Express as inverse function:
We then replace
x
x
x
with
f
−
1
(
x
)
f^{-1}(x)
f
−
1
(
x
)
and
y
y
y
with
x
x
x
to express the inverse function:
f
−
1
(
x
)
=
(
x
+
10
)
1
5
f^{-1}(x) = (x + 10)^{\frac{1}{5}}
f
−
1
(
x
)
=
(
x
+
10
)
5
1
More problems from Find derivatives of using multiple formulae
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
cos
(
x
)
f(x) = \cos(x)
f
(
x
)
=
cos
(
x
)
\newline
f
′
(
x
)
=
f'(x) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
tan
(
x
)
f(x) = \tan(x)
f
(
x
)
=
tan
(
x
)
\newline
f
′
(
x
)
=
f'(x) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
e
x
f(x) = e^x
f
(
x
)
=
e
x
\newline
f
′
(
x
)
=
f'\left(x\right) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
ln
(
x
)
f(x) = \ln(x)
f
(
x
)
=
ln
(
x
)
\newline
f
′
(
x
)
=
f'(x) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
tan
−
1
x
f(x) = \tan^{-1}{x}
f
(
x
)
=
tan
−
1
x
\newline
f
′
(
x
)
=
f'(x) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
x
e
x
f(x) = x e^x
f
(
x
)
=
x
e
x
\newline
f
′
(
x
)
=
f'\left(x\right) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
e
x
x
f(x) = \frac{e^x}{x}
f
(
x
)
=
x
e
x
\newline
f
′
(
x
)
=
f'(x) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
e
(
x
+
1
)
f(x) = e^{(x + 1)}
f
(
x
)
=
e
(
x
+
1
)
\newline
f
′
(
x
)
=
f'\left(x\right) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
x
+
3
f(x) = \sqrt{x+3}
f
(
x
)
=
x
+
3
\newline
f
′
(
x
)
=
f'(x) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
g
(
x
)
g(x)
g
(
x
)
.
\newline
g
(
x
)
=
ln
(
2
x
)
g(x) = \ln(2x)
g
(
x
)
=
ln
(
2
x
)
\newline
g
′
(
x
)
=
g^{\prime}(x) =
g
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant