Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

For the function 
f(x)=((x+4))/(7), find 
f^(-1)(x).

f^(-1)(x)=7(x+4)

f^(-1)(x)=7(x-4)

f^(-1)(x)=(x)/(7)-4

f^(-1)(x)=7x-4

For the function f(x)=(x+4)7 f(x)=\frac{(x+4)}{7} , find f1(x) f^{-1}(x) .\newlinef1(x)=7(x+4) f^{-1}(x)=7(x+4) \newlinef1(x)=7(x4) f^{-1}(x)=7(x-4) \newlinef1(x)=x74 f^{-1}(x)=\frac{x}{7}-4 \newlinef1(x)=7x4 f^{-1}(x)=7 x-4

Full solution

Q. For the function f(x)=(x+4)7 f(x)=\frac{(x+4)}{7} , find f1(x) f^{-1}(x) .\newlinef1(x)=7(x+4) f^{-1}(x)=7(x+4) \newlinef1(x)=7(x4) f^{-1}(x)=7(x-4) \newlinef1(x)=x74 f^{-1}(x)=\frac{x}{7}-4 \newlinef1(x)=7x4 f^{-1}(x)=7 x-4
  1. Write original function as yy: To find the inverse function, f1(x)f^{-1}(x), we need to switch the roles of xx and yy in the original function and then solve for yy. The original function is f(x)=x+47f(x) = \frac{x + 4}{7}, so we start by writing it as y=x+47y = \frac{x + 4}{7}.
  2. Replace yy with xx: Next, we replace yy with xx to reflect the inverse relationship: x=y+47x = \frac{y + 4}{7}.
  3. Solve for y: Now, we solve for yy by multiplying both sides of the equation by 77 to get rid of the denominator: 7x=y+47x = y + 4.
  4. Isolate y: Finally, we subtract 44 from both sides to isolate yy: 7x4=y7x - 4 = y.
  5. Inverse function: Therefore, the inverse function, f1(x)f^{-1}(x), is f1(x)=7x4f^{-1}(x) = 7x - 4.

More problems from Find derivatives of using multiple formulae