Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

For the function 
f(x)=(x^(3)-8)/(5), find 
f^(-1)(x).

f^(-1)(x)=5root(3)(x)+8

f^(-1)(x)=root(3)(5x+8)

f^(-1)(x)=root(3)(5(x+8))

f^(-1)(x)=5root(3)(x+8)

For the function f(x)=x385 f(x)=\frac{x^{3}-8}{5} , find f1(x) f^{-1}(x) .\newlinef1(x)=5x3+8 f^{-1}(x)=5 \sqrt[3]{x}+8 \newlinef1(x)=5x+83 f^{-1}(x)=\sqrt[3]{5 x+8} \newlinef1(x)=5(x+8)3 f^{-1}(x)=\sqrt[3]{5(x+8)} \newlinef1(x)=5x+83 f^{-1}(x)=5 \sqrt[3]{x+8}

Full solution

Q. For the function f(x)=x385 f(x)=\frac{x^{3}-8}{5} , find f1(x) f^{-1}(x) .\newlinef1(x)=5x3+8 f^{-1}(x)=5 \sqrt[3]{x}+8 \newlinef1(x)=5x+83 f^{-1}(x)=\sqrt[3]{5 x+8} \newlinef1(x)=5(x+8)3 f^{-1}(x)=\sqrt[3]{5(x+8)} \newlinef1(x)=5x+83 f^{-1}(x)=5 \sqrt[3]{x+8}
  1. Eliminate denominator by multiplication: Multiply both sides by 55 to eliminate the denominator:\newline5x=y385x = y^3 - 8
  2. Isolate cubic term by addition: Add 88 to both sides to isolate the cubic term:\newline5x+8=y35x + 8 = y^3
  3. Solve for yy by taking cube root: Take the cube root of both sides to solve for yy:\newliney=5x+83y = \sqrt[3]{5x + 8}
  4. Write inverse function: Now that we have solved for yy, we can write the inverse function as:\newlinef1(x)=5x+83f^{-1}(x) = \sqrt[3]{5x + 8}

More problems from Find derivatives of using multiple formulae