Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

For the function 
f(x)=x^((1)/(7))+8, find 
f^(-1)(x).

f^(-1)(x)=(x-8)^((1)/(7))

f^(-1)(x)=x^((1)/(7))-8

f^(-1)(x)=(x-8)^(7)

f^(-1)(x)=x^(7)-8

For the function f(x)=x17+8 f(x)=x^{\frac{1}{7}}+8 , find f1(x) f^{-1}(x) .\newlinef1(x)=(x8)17 f^{-1}(x)=(x-8)^{\frac{1}{7}} \newlinef1(x)=x178 f^{-1}(x)=x^{\frac{1}{7}}-8 \newlinef1(x)=(x8)7 f^{-1}(x)=(x-8)^{7} \newlinef1(x)=x78 f^{-1}(x)=x^{7}-8

Full solution

Q. For the function f(x)=x17+8 f(x)=x^{\frac{1}{7}}+8 , find f1(x) f^{-1}(x) .\newlinef1(x)=(x8)17 f^{-1}(x)=(x-8)^{\frac{1}{7}} \newlinef1(x)=x178 f^{-1}(x)=x^{\frac{1}{7}}-8 \newlinef1(x)=(x8)7 f^{-1}(x)=(x-8)^{7} \newlinef1(x)=x78 f^{-1}(x)=x^{7}-8
  1. Write function as yy: To find the inverse function, we first write the function as y=x17+8y = x^{\frac{1}{7}} + 8.
  2. Swap xx and yy: Next, we swap xx and yy to find the inverse function: x=y(1/7)+8x = y^{(1/7)} + 8.
  3. Solve for y: Now, we solve for y by subtracting 88 from both sides: x8=y1/7x - 8 = y^{1/7}.
  4. Isolate yy: To isolate yy, we raise both sides of the equation to the power of 77: (x8)7=y(x - 8)^7 = y.
  5. Find inverse function: We have found the inverse function: f1(x)=(x8)7f^{-1}(x) = (x - 8)^7.

More problems from Find derivatives of using multiple formulae