Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

For the function 
f(x)=(x^((1)/(7))+6)/(4), find 
f^(-1)(x).

f^(-1)(x)=(4x)^(7)-6

f^(-1)(x)=(4x-6)^(7)

f^(-1)(x)=(4(x-6))^(7)

f^(-1)(x)=4(x-6)^(7)

For the function f(x)=x17+64 f(x)=\frac{x^{\frac{1}{7}}+6}{4} , find f1(x) f^{-1}(x) .\newlinef1(x)=(4x)76 f^{-1}(x)=(4 x)^{7}-6 \newlinef1(x)=(4x6)7 f^{-1}(x)=(4 x-6)^{7} \newlinef1(x)=(4(x6))7 f^{-1}(x)=(4(x-6))^{7} \newlinef1(x)=4(x6)7 f^{-1}(x)=4(x-6)^{7}

Full solution

Q. For the function f(x)=x17+64 f(x)=\frac{x^{\frac{1}{7}}+6}{4} , find f1(x) f^{-1}(x) .\newlinef1(x)=(4x)76 f^{-1}(x)=(4 x)^{7}-6 \newlinef1(x)=(4x6)7 f^{-1}(x)=(4 x-6)^{7} \newlinef1(x)=(4(x6))7 f^{-1}(x)=(4(x-6))^{7} \newlinef1(x)=4(x6)7 f^{-1}(x)=4(x-6)^{7}
  1. Write function as yy: To find the inverse function, we first write the function as yy:y=(x17+6)4y = \frac{{(x^{\frac{1}{7}} + 6)}}{4}
  2. Swap x and y: Next, we swap x and y to begin solving for the inverse function:\newlinex=y17+64x = \frac{y^{\frac{1}{7}} + 6}{4}
  3. Eliminate denominator: Multiply both sides by 44 to eliminate the denominator:\newline4x=y17+64x = y^{\frac{1}{7}} + 6
  4. Isolate term with y: Subtract 66 from both sides to isolate the term with y:\newline4x6=y174x - 6 = y^{\frac{1}{7}}
  5. Eliminate exponent on y: Raise both sides to the power of 77 to eliminate the exponent on y: (4x6)7=(y17)7(4x - 6)^7 = (y^{\frac{1}{7}})^7
  6. Simplify to get yy: Simplify the right side to get yy by itself: (4x6)7=y(4x - 6)^7 = y
  7. Inverse function: Now we have the inverse function: f1(x)=(4x6)7f^{-1}(x) = (4x - 6)^7

More problems from Find derivatives of using multiple formulae