Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

For the function 
f(x)=(x^((1)/(5)+5))/(7), find 
f^(-1)(x).

f^(-1)(x)=7(x^(5)-5)

f^(-1)(x)=7x^(5)-5

f^(-1)(x)=(7x-5)^(5)

f^(-1)(x)=(7(x-5))^(5)

For the function f(x)=x15+57 f(x)=\frac{x^{\frac{1}{5}+5}}{7} , find f1(x) f^{-1}(x) .\newlinef1(x)=7(x55) f^{-1}(x)=7\left(x^{5}-5\right) \newlinef1(x)=7x55 f^{-1}(x)=7 x^{5}-5 \newlinef1(x)=(7x5)5 f^{-1}(x)=(7 x-5)^{5} \newlinef1(x)=(7(x5))5 f^{-1}(x)=(7(x-5))^{5}

Full solution

Q. For the function f(x)=x15+57 f(x)=\frac{x^{\frac{1}{5}+5}}{7} , find f1(x) f^{-1}(x) .\newlinef1(x)=7(x55) f^{-1}(x)=7\left(x^{5}-5\right) \newlinef1(x)=7x55 f^{-1}(x)=7 x^{5}-5 \newlinef1(x)=(7x5)5 f^{-1}(x)=(7 x-5)^{5} \newlinef1(x)=(7(x5))5 f^{-1}(x)=(7(x-5))^{5}
  1. Write function as yy: To find the inverse function, we first write the function as y=x15+57y = \frac{x^{\frac{1}{5}}+5}{7}.
  2. Swap x and y: Next, we swap x and y to find the inverse function: x=y15+57.x = \frac{y^{\frac{1}{5}}+5}{7}.
  3. Solve for y: Now, we solve for y. Multiply both sides by 77 to get rid of the denominator: 7x=y(1/5)+57x = y^{(1/5)}+5.
  4. Isolate term with y: Subtract 55 from both sides to isolate the term with yy: 7x5=y1/57x - 5 = y^{1/5}.
  5. Eliminate fifth root: Raise both sides to the power of 55 to eliminate the fifth root: (7x5)5=y(7x - 5)^5 = y.
  6. Find inverse function: We have found the inverse function: f1(x)=(7x5)5f^{-1}(x) = (7x - 5)^5.

More problems from Find derivatives of using multiple formulae