Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

For the function 
f(x)=((x-1)/(2))^(5), find 
f^(-1)(x).

f^(-1)(x)=2root(5)(x)+1

f^(-1)(x)=2root(5)(x+1)

f^(-1)(x)=root(5)(2(x+1))

f^(-1)(x)=root(5)(2x)+1

For the function f(x)=(x12)5 f(x)=\left(\frac{x-1}{2}\right)^{5} , find f1(x) f^{-1}(x) .\newlinef1(x)=2x5+1 f^{-1}(x)=2 \sqrt[5]{x}+1 \newlinef1(x)=2x+15 f^{-1}(x)=2 \sqrt[5]{x+1} \newlinef1(x)=2(x+1)5 f^{-1}(x)=\sqrt[5]{2(x+1)} \newlinef1(x)=2x5+1 f^{-1}(x)=\sqrt[5]{2 x}+1

Full solution

Q. For the function f(x)=(x12)5 f(x)=\left(\frac{x-1}{2}\right)^{5} , find f1(x) f^{-1}(x) .\newlinef1(x)=2x5+1 f^{-1}(x)=2 \sqrt[5]{x}+1 \newlinef1(x)=2x+15 f^{-1}(x)=2 \sqrt[5]{x+1} \newlinef1(x)=2(x+1)5 f^{-1}(x)=\sqrt[5]{2(x+1)} \newlinef1(x)=2x5+1 f^{-1}(x)=\sqrt[5]{2 x}+1
  1. Define function f(x)f(x): Let's start by defining the function f(x)f(x) and setting it equal to yy for convenience:\newlinef(x)=(x12)5f(x) = \left(\frac{x-1}{2}\right)^5\newliney=(x12)5y = \left(\frac{x-1}{2}\right)^5\newlineNow, to find the inverse function, we need to solve for xx in terms of yy.
  2. Swap xx and yy: Swap xx and yy to begin finding the inverse function:\newlinex=(y12)5x = \left(\frac{y-1}{2}\right)^5\newlineNow we need to solve for yy.
  3. Take fifth root: Take the fifth root of both sides to eliminate the exponent on the right-hand side:\newlinex5=y12\sqrt[5]{x} = \frac{y-1}{2}
  4. Multiply by 22: Multiply both sides by 22 to isolate the term with yy:2×x5=y12 \times \sqrt[5]{x} = y - 1
  5. Add 11: Add 11 to both sides to solve for y:\newline2x5+1=y2 \cdot \sqrt[5]{x} + 1 = y
  6. Inverse function in terms of y: Now we have the inverse function in terms of y: f1(x)=2x5+1f^{-1}(x) = 2 \cdot \sqrt[5]{x} + 1

More problems from Find derivatives of using multiple formulae