Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
For the function
f
(
x
)
=
x
7
5
+
8
f(x)=\frac{\sqrt[7]{x}}{5}+8
f
(
x
)
=
5
7
x
+
8
, find
f
−
1
(
x
)
f^{-1}(x)
f
−
1
(
x
)
.
\newline
f
−
1
(
x
)
=
5
x
7
−
8
f^{-1}(x)=5 x^{7}-8
f
−
1
(
x
)
=
5
x
7
−
8
\newline
f
−
1
(
x
)
=
(
5
x
)
7
−
8
f^{-1}(x)=(5 x)^{7}-8
f
−
1
(
x
)
=
(
5
x
)
7
−
8
\newline
f
−
1
(
x
)
=
(
5
(
x
−
8
)
)
7
f^{-1}(x)=(5(x-8))^{7}
f
−
1
(
x
)
=
(
5
(
x
−
8
)
)
7
\newline
f
−
1
(
x
)
=
5
(
x
−
8
)
7
f^{-1}(x)=5(x-8)^{7}
f
−
1
(
x
)
=
5
(
x
−
8
)
7
View step-by-step help
Home
Math Problems
Calculus
Find derivatives of using multiple formulae
Full solution
Q.
For the function
f
(
x
)
=
x
7
5
+
8
f(x)=\frac{\sqrt[7]{x}}{5}+8
f
(
x
)
=
5
7
x
+
8
, find
f
−
1
(
x
)
f^{-1}(x)
f
−
1
(
x
)
.
\newline
f
−
1
(
x
)
=
5
x
7
−
8
f^{-1}(x)=5 x^{7}-8
f
−
1
(
x
)
=
5
x
7
−
8
\newline
f
−
1
(
x
)
=
(
5
x
)
7
−
8
f^{-1}(x)=(5 x)^{7}-8
f
−
1
(
x
)
=
(
5
x
)
7
−
8
\newline
f
−
1
(
x
)
=
(
5
(
x
−
8
)
)
7
f^{-1}(x)=(5(x-8))^{7}
f
−
1
(
x
)
=
(
5
(
x
−
8
)
)
7
\newline
f
−
1
(
x
)
=
5
(
x
−
8
)
7
f^{-1}(x)=5(x-8)^{7}
f
−
1
(
x
)
=
5
(
x
−
8
)
7
Write function as
y
y
y
:
To find the inverse function, we first write the function as
y
y
y
:
y
=
x
1
7
5
+
8
y = \frac{x^{\frac{1}{7}}}{5} + 8
y
=
5
x
7
1
+
8
Swap x and y:
Next, we swap x and y to find the inverse:
x
=
y
1
7
5
+
8
x = \frac{y^{\frac{1}{7}}}{5} + 8
x
=
5
y
7
1
+
8
Solve for y:
Now, we solve for y to get the inverse function. Start by subtracting
8
8
8
from both sides:
x
−
8
=
y
1
7
5
x - 8 = \frac{y^{\frac{1}{7}}}{5}
x
−
8
=
5
y
7
1
Isolate seventh root:
Multiply both sides by
5
5
5
to isolate the seventh root of
y
y
y
:
5
(
x
−
8
)
=
y
1
7
5(x - 8) = y^{\frac{1}{7}}
5
(
x
−
8
)
=
y
7
1
Eliminate seventh root:
Raise both sides to the power of
7
7
7
to eliminate the seventh root:
[
5
(
x
−
8
)
]
7
=
y
[5(x - 8)]^7 = y
[
5
(
x
−
8
)
]
7
=
y
Find inverse function:
The inverse function is then:
f
−
1
(
x
)
=
[
5
(
x
−
8
)
]
7
f^{-1}(x) = [5(x - 8)]^7
f
−
1
(
x
)
=
[
5
(
x
−
8
)
]
7
More problems from Find derivatives of using multiple formulae
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
cos
(
x
)
f(x) = \cos(x)
f
(
x
)
=
cos
(
x
)
\newline
f
′
(
x
)
=
f'(x) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
tan
(
x
)
f(x) = \tan(x)
f
(
x
)
=
tan
(
x
)
\newline
f
′
(
x
)
=
f'(x) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
e
x
f(x) = e^x
f
(
x
)
=
e
x
\newline
f
′
(
x
)
=
f'\left(x\right) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
ln
(
x
)
f(x) = \ln(x)
f
(
x
)
=
ln
(
x
)
\newline
f
′
(
x
)
=
f'(x) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
tan
−
1
x
f(x) = \tan^{-1}{x}
f
(
x
)
=
tan
−
1
x
\newline
f
′
(
x
)
=
f'(x) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
x
e
x
f(x) = x e^x
f
(
x
)
=
x
e
x
\newline
f
′
(
x
)
=
f'\left(x\right) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
e
x
x
f(x) = \frac{e^x}{x}
f
(
x
)
=
x
e
x
\newline
f
′
(
x
)
=
f'(x) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
e
(
x
+
1
)
f(x) = e^{(x + 1)}
f
(
x
)
=
e
(
x
+
1
)
\newline
f
′
(
x
)
=
f'\left(x\right) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
x
+
3
f(x) = \sqrt{x+3}
f
(
x
)
=
x
+
3
\newline
f
′
(
x
)
=
f'(x) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
g
(
x
)
g(x)
g
(
x
)
.
\newline
g
(
x
)
=
ln
(
2
x
)
g(x) = \ln(2x)
g
(
x
)
=
ln
(
2
x
)
\newline
g
′
(
x
)
=
g^{\prime}(x) =
g
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant