Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

For the function 
f(x)=(root(7)(x))/(5)+8, find 
f^(-1)(x).

f^(-1)(x)=5x^(7)-8

f^(-1)(x)=(5x)^(7)-8

f^(-1)(x)=(5(x-8))^(7)

f^(-1)(x)=5(x-8)^(7)

For the function f(x)=x75+8 f(x)=\frac{\sqrt[7]{x}}{5}+8 , find f1(x) f^{-1}(x) .\newlinef1(x)=5x78 f^{-1}(x)=5 x^{7}-8 \newlinef1(x)=(5x)78 f^{-1}(x)=(5 x)^{7}-8 \newlinef1(x)=(5(x8))7 f^{-1}(x)=(5(x-8))^{7} \newlinef1(x)=5(x8)7 f^{-1}(x)=5(x-8)^{7}

Full solution

Q. For the function f(x)=x75+8 f(x)=\frac{\sqrt[7]{x}}{5}+8 , find f1(x) f^{-1}(x) .\newlinef1(x)=5x78 f^{-1}(x)=5 x^{7}-8 \newlinef1(x)=(5x)78 f^{-1}(x)=(5 x)^{7}-8 \newlinef1(x)=(5(x8))7 f^{-1}(x)=(5(x-8))^{7} \newlinef1(x)=5(x8)7 f^{-1}(x)=5(x-8)^{7}
  1. Write function as yy: To find the inverse function, we first write the function as yy:y=x175+8y = \frac{x^{\frac{1}{7}}}{5} + 8
  2. Swap x and y: Next, we swap x and y to find the inverse: x=y175+8x = \frac{y^{\frac{1}{7}}}{5} + 8
  3. Solve for y: Now, we solve for y to get the inverse function. Start by subtracting 88 from both sides: x8=y175x - 8 = \frac{y^{\frac{1}{7}}}{5}
  4. Isolate seventh root: Multiply both sides by 55 to isolate the seventh root of yy:5(x8)=y175(x - 8) = y^{\frac{1}{7}}
  5. Eliminate seventh root: Raise both sides to the power of 77 to eliminate the seventh root: [5(x8)]7=y[5(x - 8)]^7 = y
  6. Find inverse function: The inverse function is then: f1(x)=[5(x8)]7f^{-1}(x) = [5(x - 8)]^7

More problems from Find derivatives of using multiple formulae