Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

For the function 
f(x)=root(5)(x^(7)-8), find 
f^(-1)(x).

f^(-1)(x)=(root(7)(x))^(5)+8

f^(-1)(x)=root(7)(x^(5)+8)

f^(-1)(x)=root(7)((x+8)^(5))

f^(-1)(x)=root(7)(x^(5))+8

For the function f(x)=x785 f(x)=\sqrt[5]{x^{7}-8} , find f1(x) f^{-1}(x) .\newlinef1(x)=(x7)5+8 f^{-1}(x)=(\sqrt[7]{x})^{5}+8 \newlinef1(x)=x5+87 f^{-1}(x)=\sqrt[7]{x^{5}+8} \newlinef1(x)=(x+8)57 f^{-1}(x)=\sqrt[7]{(x+8)^{5}} \newlinef1(x)=x57+8 f^{-1}(x)=\sqrt[7]{x^{5}}+8

Full solution

Q. For the function f(x)=x785 f(x)=\sqrt[5]{x^{7}-8} , find f1(x) f^{-1}(x) .\newlinef1(x)=(x7)5+8 f^{-1}(x)=(\sqrt[7]{x})^{5}+8 \newlinef1(x)=x5+87 f^{-1}(x)=\sqrt[7]{x^{5}+8} \newlinef1(x)=(x+8)57 f^{-1}(x)=\sqrt[7]{(x+8)^{5}} \newlinef1(x)=x57+8 f^{-1}(x)=\sqrt[7]{x^{5}}+8
  1. Write function as yy: To find the inverse function, we first write the function as y=x785y = \sqrt[5]{x^7 - 8}.
  2. Express function in terms: Next, we express the function in terms of xx: x=y785x = \sqrt[5]{y^7 - 8}.
  3. Eliminate fifth root: Now we raise both sides of the equation to the power of 55 to eliminate the fifth root: x5=y78x^5 = y^7 - 8.
  4. Isolate term with y: We then add 88 to both sides to isolate the term with yy: x5+8=y7x^5 + 8 = y^7.
  5. Solve for yy: Next, we take the seventh root of both sides to solve for yy: x5+87=y\sqrt[7]{x^5 + 8} = y.
  6. Express inverse function: Finally, we express the inverse function in terms of xx: f1(x)=x5+87f^{-1}(x) = \sqrt[7]{x^5 + 8}.

More problems from Find derivatives of using multiple formulae