Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

For the function 
f(x)=9(x+2)^((1)/(7)), find 
f^(-1)(x).

f^(-1)(x)=((x-2)^(7))/(9)

f^(-1)(x)=(x^(7)-2)/(9)

f^(-1)(x)=((x-2)/(9))^(7)

f^(-1)(x)=((x)/(9))^(7)-2

For the function f(x)=9(x+2)17 f(x)=9(x+2)^{\frac{1}{7}} , find f1(x) f^{-1}(x) .\newlinef1(x)=(x2)79 f^{-1}(x)=\frac{(x-2)^{7}}{9} \newlinef1(x)=x729 f^{-1}(x)=\frac{x^{7}-2}{9} \newlinef1(x)=(x29)7 f^{-1}(x)=\left(\frac{x-2}{9}\right)^{7} \newlinef1(x)=(x9)72 f^{-1}(x)=\left(\frac{x}{9}\right)^{7}-2

Full solution

Q. For the function f(x)=9(x+2)17 f(x)=9(x+2)^{\frac{1}{7}} , find f1(x) f^{-1}(x) .\newlinef1(x)=(x2)79 f^{-1}(x)=\frac{(x-2)^{7}}{9} \newlinef1(x)=x729 f^{-1}(x)=\frac{x^{7}-2}{9} \newlinef1(x)=(x29)7 f^{-1}(x)=\left(\frac{x-2}{9}\right)^{7} \newlinef1(x)=(x9)72 f^{-1}(x)=\left(\frac{x}{9}\right)^{7}-2
  1. Replace with yy: To find the inverse function, we start by replacing f(x)f(x) with yy for convenience:\newliney=9(x+2)17y = 9(x + 2)^{\frac{1}{7}}
  2. Swap x and y: Next, we swap x and y to begin solving for the new y, which will be the inverse function:\newlinex=9(y+2)17x = 9(y + 2)^{\frac{1}{7}}
  3. Isolate y term: Now, we isolate the term containing y by dividing both sides by x9\frac{x}{9} = (y+2)17(y + 2)^{\frac{1}{7}}
  4. Remove exponent: To remove the exponent, we raise both sides of the equation to the power of 77:(x9)7=y+2\left(\frac{x}{9}\right)^7 = y + 2
  5. Subtract 22: Subtract 22 from both sides to solve for yy: ((x/9)7)2=y((x/9)^7) - 2 = y
  6. Replace with f1(x)f^{-1}(x): Finally, we replace yy with f1(x)f^{-1}(x) to denote the inverse function: f1(x)=(x9)72f^{-1}(x) = \left(\frac{x}{9}\right)^7 - 2

More problems from Find derivatives of using multiple formulae