Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
For the function
f
(
x
)
=
9
(
x
+
2
)
1
7
f(x)=9(x+2)^{\frac{1}{7}}
f
(
x
)
=
9
(
x
+
2
)
7
1
, find
f
−
1
(
x
)
f^{-1}(x)
f
−
1
(
x
)
.
\newline
f
−
1
(
x
)
=
(
x
−
2
)
7
9
f^{-1}(x)=\frac{(x-2)^{7}}{9}
f
−
1
(
x
)
=
9
(
x
−
2
)
7
\newline
f
−
1
(
x
)
=
x
7
−
2
9
f^{-1}(x)=\frac{x^{7}-2}{9}
f
−
1
(
x
)
=
9
x
7
−
2
\newline
f
−
1
(
x
)
=
(
x
−
2
9
)
7
f^{-1}(x)=\left(\frac{x-2}{9}\right)^{7}
f
−
1
(
x
)
=
(
9
x
−
2
)
7
\newline
f
−
1
(
x
)
=
(
x
9
)
7
−
2
f^{-1}(x)=\left(\frac{x}{9}\right)^{7}-2
f
−
1
(
x
)
=
(
9
x
)
7
−
2
View step-by-step help
Home
Math Problems
Calculus
Find derivatives of using multiple formulae
Full solution
Q.
For the function
f
(
x
)
=
9
(
x
+
2
)
1
7
f(x)=9(x+2)^{\frac{1}{7}}
f
(
x
)
=
9
(
x
+
2
)
7
1
, find
f
−
1
(
x
)
f^{-1}(x)
f
−
1
(
x
)
.
\newline
f
−
1
(
x
)
=
(
x
−
2
)
7
9
f^{-1}(x)=\frac{(x-2)^{7}}{9}
f
−
1
(
x
)
=
9
(
x
−
2
)
7
\newline
f
−
1
(
x
)
=
x
7
−
2
9
f^{-1}(x)=\frac{x^{7}-2}{9}
f
−
1
(
x
)
=
9
x
7
−
2
\newline
f
−
1
(
x
)
=
(
x
−
2
9
)
7
f^{-1}(x)=\left(\frac{x-2}{9}\right)^{7}
f
−
1
(
x
)
=
(
9
x
−
2
)
7
\newline
f
−
1
(
x
)
=
(
x
9
)
7
−
2
f^{-1}(x)=\left(\frac{x}{9}\right)^{7}-2
f
−
1
(
x
)
=
(
9
x
)
7
−
2
Replace with
y
y
y
:
To find the inverse function, we start by replacing
f
(
x
)
f(x)
f
(
x
)
with
y
y
y
for convenience:
\newline
y
=
9
(
x
+
2
)
1
7
y = 9(x + 2)^{\frac{1}{7}}
y
=
9
(
x
+
2
)
7
1
Swap x and y:
Next, we swap x and y to begin solving for the new y, which will be the inverse function:
\newline
x
=
9
(
y
+
2
)
1
7
x = 9(y + 2)^{\frac{1}{7}}
x
=
9
(
y
+
2
)
7
1
Isolate y term:
Now, we isolate the term containing y by dividing both sides by
x
9
\frac{x}{9}
9
x
=
(
y
+
2
)
1
7
(y + 2)^{\frac{1}{7}}
(
y
+
2
)
7
1
Remove exponent:
To remove the exponent, we raise both sides of the equation to the power of
7
7
7
:
(
x
9
)
7
=
y
+
2
\left(\frac{x}{9}\right)^7 = y + 2
(
9
x
)
7
=
y
+
2
Subtract
2
2
2
:
Subtract
2
2
2
from both sides to solve for
y
y
y
:
(
(
x
/
9
)
7
)
−
2
=
y
((x/9)^7) - 2 = y
((
x
/9
)
7
)
−
2
=
y
Replace with
f
−
1
(
x
)
f^{-1}(x)
f
−
1
(
x
)
:
Finally, we replace
y
y
y
with
f
−
1
(
x
)
f^{-1}(x)
f
−
1
(
x
)
to denote the inverse function:
f
−
1
(
x
)
=
(
x
9
)
7
−
2
f^{-1}(x) = \left(\frac{x}{9}\right)^7 - 2
f
−
1
(
x
)
=
(
9
x
)
7
−
2
More problems from Find derivatives of using multiple formulae
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
cos
(
x
)
f(x) = \cos(x)
f
(
x
)
=
cos
(
x
)
\newline
f
′
(
x
)
=
f'(x) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
tan
(
x
)
f(x) = \tan(x)
f
(
x
)
=
tan
(
x
)
\newline
f
′
(
x
)
=
f'(x) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
e
x
f(x) = e^x
f
(
x
)
=
e
x
\newline
f
′
(
x
)
=
f'\left(x\right) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
ln
(
x
)
f(x) = \ln(x)
f
(
x
)
=
ln
(
x
)
\newline
f
′
(
x
)
=
f'(x) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
tan
−
1
x
f(x) = \tan^{-1}{x}
f
(
x
)
=
tan
−
1
x
\newline
f
′
(
x
)
=
f'(x) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
x
e
x
f(x) = x e^x
f
(
x
)
=
x
e
x
\newline
f
′
(
x
)
=
f'\left(x\right) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
e
x
x
f(x) = \frac{e^x}{x}
f
(
x
)
=
x
e
x
\newline
f
′
(
x
)
=
f'(x) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
e
(
x
+
1
)
f(x) = e^{(x + 1)}
f
(
x
)
=
e
(
x
+
1
)
\newline
f
′
(
x
)
=
f'\left(x\right) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
x
+
3
f(x) = \sqrt{x+3}
f
(
x
)
=
x
+
3
\newline
f
′
(
x
)
=
f'(x) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
g
(
x
)
g(x)
g
(
x
)
.
\newline
g
(
x
)
=
ln
(
2
x
)
g(x) = \ln(2x)
g
(
x
)
=
ln
(
2
x
)
\newline
g
′
(
x
)
=
g^{\prime}(x) =
g
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant