Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
For the function
f
(
x
)
=
8
x
3
+
4
f(x)=8 \sqrt[3]{x}+4
f
(
x
)
=
8
3
x
+
4
, find
f
−
1
(
x
)
f^{-1}(x)
f
−
1
(
x
)
.
\newline
f
−
1
(
x
)
=
(
x
8
)
3
−
4
f^{-1}(x)=\left(\frac{x}{8}\right)^{3}-4
f
−
1
(
x
)
=
(
8
x
)
3
−
4
\newline
f
−
1
(
x
)
=
(
x
−
4
8
)
3
f^{-1}(x)=\left(\frac{x-4}{8}\right)^{3}
f
−
1
(
x
)
=
(
8
x
−
4
)
3
\newline
f
−
1
(
x
)
=
x
3
8
−
4
f^{-1}(x)=\frac{x^{3}}{8}-4
f
−
1
(
x
)
=
8
x
3
−
4
\newline
f
−
1
(
x
)
=
(
x
8
−
4
)
3
f^{-1}(x)=\left(\frac{x}{8}-4\right)^{3}
f
−
1
(
x
)
=
(
8
x
−
4
)
3
View step-by-step help
Home
Math Problems
Calculus
Find derivatives of using multiple formulae
Full solution
Q.
For the function
f
(
x
)
=
8
x
3
+
4
f(x)=8 \sqrt[3]{x}+4
f
(
x
)
=
8
3
x
+
4
, find
f
−
1
(
x
)
f^{-1}(x)
f
−
1
(
x
)
.
\newline
f
−
1
(
x
)
=
(
x
8
)
3
−
4
f^{-1}(x)=\left(\frac{x}{8}\right)^{3}-4
f
−
1
(
x
)
=
(
8
x
)
3
−
4
\newline
f
−
1
(
x
)
=
(
x
−
4
8
)
3
f^{-1}(x)=\left(\frac{x-4}{8}\right)^{3}
f
−
1
(
x
)
=
(
8
x
−
4
)
3
\newline
f
−
1
(
x
)
=
x
3
8
−
4
f^{-1}(x)=\frac{x^{3}}{8}-4
f
−
1
(
x
)
=
8
x
3
−
4
\newline
f
−
1
(
x
)
=
(
x
8
−
4
)
3
f^{-1}(x)=\left(\frac{x}{8}-4\right)^{3}
f
−
1
(
x
)
=
(
8
x
−
4
)
3
Subtract and isolate
y
y
y
:
Subtract
4
4
4
from both sides to isolate the term with
y
y
y
:
\newline
x
−
4
=
8
3
(
y
)
x - 4 = 8\sqrt{3}(y)
x
−
4
=
8
3
(
y
)
Divide to isolate
y
y
y
:
Divide both sides by
8
8
8
to further isolate the term with
y
y
y
:
\newline
(
x
−
4
)
/
8
=
3
(
y
)
(x - 4) / 8 = \sqrt{3}(y)
(
x
−
4
)
/8
=
3
(
y
)
Eliminate cube root:
Now, we need to get rid of the cube root. To do this, we raise both sides to the power of
3
3
3
:
(
x
−
4
8
)
3
=
(
y
3
)
3
\left(\frac{x - 4}{8}\right)^3 = (\sqrt[3]{y})^3
(
8
x
−
4
)
3
=
(
3
y
)
3
Final inverse function:
Since
(
3
(
y
)
)
3
(\sqrt{3}(y))^3
(
3
(
y
)
)
3
is just
y
y
y
, we have:
\newline
y
=
(
x
−
4
8
)
3
y = \left(\frac{x - 4}{8}\right)^3
y
=
(
8
x
−
4
)
3
\newline
This is the inverse function,
f
−
1
(
x
)
f^{-1}(x)
f
−
1
(
x
)
.
More problems from Find derivatives of using multiple formulae
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
cos
(
x
)
f(x) = \cos(x)
f
(
x
)
=
cos
(
x
)
\newline
f
′
(
x
)
=
f'(x) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
tan
(
x
)
f(x) = \tan(x)
f
(
x
)
=
tan
(
x
)
\newline
f
′
(
x
)
=
f'(x) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
e
x
f(x) = e^x
f
(
x
)
=
e
x
\newline
f
′
(
x
)
=
f'\left(x\right) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
ln
(
x
)
f(x) = \ln(x)
f
(
x
)
=
ln
(
x
)
\newline
f
′
(
x
)
=
f'(x) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
tan
−
1
x
f(x) = \tan^{-1}{x}
f
(
x
)
=
tan
−
1
x
\newline
f
′
(
x
)
=
f'(x) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
x
e
x
f(x) = x e^x
f
(
x
)
=
x
e
x
\newline
f
′
(
x
)
=
f'\left(x\right) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
e
x
x
f(x) = \frac{e^x}{x}
f
(
x
)
=
x
e
x
\newline
f
′
(
x
)
=
f'(x) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
e
(
x
+
1
)
f(x) = e^{(x + 1)}
f
(
x
)
=
e
(
x
+
1
)
\newline
f
′
(
x
)
=
f'\left(x\right) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
x
+
3
f(x) = \sqrt{x+3}
f
(
x
)
=
x
+
3
\newline
f
′
(
x
)
=
f'(x) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
g
(
x
)
g(x)
g
(
x
)
.
\newline
g
(
x
)
=
ln
(
2
x
)
g(x) = \ln(2x)
g
(
x
)
=
ln
(
2
x
)
\newline
g
′
(
x
)
=
g^{\prime}(x) =
g
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant