Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

For the function 
f(x)=8root(3)(x)+4, find 
f^(-1)(x).

f^(-1)(x)=((x)/(8))^(3)-4

f^(-1)(x)=((x-4)/(8))^(3)

f^(-1)(x)=(x^(3))/(8)-4

f^(-1)(x)=((x)/(8)-4)^(3)

For the function f(x)=8x3+4 f(x)=8 \sqrt[3]{x}+4 , find f1(x) f^{-1}(x) .\newlinef1(x)=(x8)34 f^{-1}(x)=\left(\frac{x}{8}\right)^{3}-4 \newlinef1(x)=(x48)3 f^{-1}(x)=\left(\frac{x-4}{8}\right)^{3} \newlinef1(x)=x384 f^{-1}(x)=\frac{x^{3}}{8}-4 \newlinef1(x)=(x84)3 f^{-1}(x)=\left(\frac{x}{8}-4\right)^{3}

Full solution

Q. For the function f(x)=8x3+4 f(x)=8 \sqrt[3]{x}+4 , find f1(x) f^{-1}(x) .\newlinef1(x)=(x8)34 f^{-1}(x)=\left(\frac{x}{8}\right)^{3}-4 \newlinef1(x)=(x48)3 f^{-1}(x)=\left(\frac{x-4}{8}\right)^{3} \newlinef1(x)=x384 f^{-1}(x)=\frac{x^{3}}{8}-4 \newlinef1(x)=(x84)3 f^{-1}(x)=\left(\frac{x}{8}-4\right)^{3}
  1. Subtract and isolate yy: Subtract 44 from both sides to isolate the term with yy:\newlinex4=83(y)x - 4 = 8\sqrt{3}(y)
  2. Divide to isolate yy: Divide both sides by 88 to further isolate the term with yy:\newline(x4)/8=3(y)(x - 4) / 8 = \sqrt{3}(y)
  3. Eliminate cube root: Now, we need to get rid of the cube root. To do this, we raise both sides to the power of 33:(x48)3=(y3)3\left(\frac{x - 4}{8}\right)^3 = (\sqrt[3]{y})^3
  4. Final inverse function: Since (3(y))3(\sqrt{3}(y))^3 is just yy, we have:\newliney=(x48)3y = \left(\frac{x - 4}{8}\right)^3\newlineThis is the inverse function, f1(x)f^{-1}(x).

More problems from Find derivatives of using multiple formulae