Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

For the function 
f(x)=7root(3)(x)-10, find 
f^(-1)(x).

f^(-1)(x)=((x+10)^(3))/(7)

f^(-1)(x)=((x+10)/(7))^(3)

f^(-1)(x)=((x)/(7)+10)^(3)

f^(-1)(x)=(x^(3)+10)/(7)

For the function f(x)=7x310 f(x)=7 \sqrt[3]{x}-10 , find f1(x) f^{-1}(x) .\newlinef1(x)=(x+10)37 f^{-1}(x)=\frac{(x+10)^{3}}{7} \newlinef1(x)=(x+107)3 f^{-1}(x)=\left(\frac{x+10}{7}\right)^{3} \newlinef1(x)=(x7+10)3 f^{-1}(x)=\left(\frac{x}{7}+10\right)^{3} \newlinef1(x)=x3+107 f^{-1}(x)=\frac{x^{3}+10}{7}

Full solution

Q. For the function f(x)=7x310 f(x)=7 \sqrt[3]{x}-10 , find f1(x) f^{-1}(x) .\newlinef1(x)=(x+10)37 f^{-1}(x)=\frac{(x+10)^{3}}{7} \newlinef1(x)=(x+107)3 f^{-1}(x)=\left(\frac{x+10}{7}\right)^{3} \newlinef1(x)=(x7+10)3 f^{-1}(x)=\left(\frac{x}{7}+10\right)^{3} \newlinef1(x)=x3+107 f^{-1}(x)=\frac{x^{3}+10}{7}
  1. Write function as yy: To find the inverse function, we first write the function as y=7x310y = 7\sqrt[3]{x} - 10.
  2. Swap x and y: Next, we swap x and y to solve for the inverse function: x=7y310x = 7\sqrt[3]{y} - 10.
  3. Isolate cube root term: Now, we isolate the cube root term by adding 1010 to both sides: x+10=7y3x + 10 = 7\sqrt[3]{y}.
  4. Cube both sides: To remove the cube root, we cube both sides of the equation: (x+10)3=(7y3)3(x + 10)^3 = (7\sqrt[3]{y})^3.
  5. Divide by 737^3: Cubing the right side gives us (x+10)3=73×y(x + 10)^3 = 7^3 \times y because (y3)3=y(\sqrt[3]{y})^3 = y.
  6. Simplify the equation: Now we divide both sides by 737^3 to solve for yy: y=(x+10)373y = \frac{(x + 10)^3}{7^3}.
  7. Simplify the equation: Now we divide both sides by 737^3 to solve for yy: y=(x+10)373y = \frac{(x + 10)^3}{7^3}.Since 737^3 is 343343, we simplify the equation to get the inverse function: f1(x)=(x+10)3343f^{-1}(x) = \frac{(x + 10)^3}{343}.

More problems from Find derivatives of using multiple formulae