Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

For the function 
f(x)=7(x-6), find 
f^(-1)(x).

f^(-1)(x)=7(x+6)

f^(-1)(x)=(x)/(7)-6

f^(-1)(x)=((x-6))/(7)

f^(-1)(x)=(x)/(7)+6

For the function f(x)=7(x6) f(x)=7(x-6) , find f1(x) f^{-1}(x) .\newlinef1(x)=7(x+6) f^{-1}(x)=7(x+6) \newlinef1(x)=x76 f^{-1}(x)=\frac{x}{7}-6 \newlinef1(x)=(x6)7 f^{-1}(x)=\frac{(x-6)}{7} \newlinef1(x)=x7+6 f^{-1}(x)=\frac{x}{7}+6

Full solution

Q. For the function f(x)=7(x6) f(x)=7(x-6) , find f1(x) f^{-1}(x) .\newlinef1(x)=7(x+6) f^{-1}(x)=7(x+6) \newlinef1(x)=x76 f^{-1}(x)=\frac{x}{7}-6 \newlinef1(x)=(x6)7 f^{-1}(x)=\frac{(x-6)}{7} \newlinef1(x)=x7+6 f^{-1}(x)=\frac{x}{7}+6
  1. Swap x and y: Swap xx and yy to begin finding the inverse function.x=7(y6)x = 7(y - 6)
  2. Solve for y: Solve the equation for y to find the inverse function. x=7y42x = 7y - 42
  3. Add 4242: Add 4242 to both sides of the equation to isolate the term with yy.\newlinex+42=7yx + 42 = 7y
  4. Divide by 77: Divide both sides of the equation by 77 to solve for yy.y=x+427y = \frac{x + 42}{7}
  5. Replace with f1(x)f^{-1}(x): Replace yy with f1(x)f^{-1}(x) to denote the inverse function.\newlinef1(x)=x+427f^{-1}(x) = \frac{x + 42}{7}

More problems from Find derivatives of using multiple formulae