Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
For the function
f
(
x
)
=
5
x
+
10
5
f(x)=5 \sqrt[5]{x+10}
f
(
x
)
=
5
5
x
+
10
, find
f
−
1
(
x
)
f^{-1}(x)
f
−
1
(
x
)
.
\newline
f
−
1
(
x
)
=
x
5
5
−
10
f^{-1}(x)=\frac{x^{5}}{5}-10
f
−
1
(
x
)
=
5
x
5
−
10
\newline
f
−
1
(
x
)
=
(
x
5
)
5
−
10
f^{-1}(x)=\left(\frac{x}{5}\right)^{5}-10
f
−
1
(
x
)
=
(
5
x
)
5
−
10
\newline
f
−
1
(
x
)
=
(
x
5
−
10
)
5
f^{-1}(x)=\left(\frac{x}{5}-10\right)^{5}
f
−
1
(
x
)
=
(
5
x
−
10
)
5
\newline
f
−
1
(
x
)
=
(
x
−
10
)
5
5
f^{-1}(x)=\frac{(x-10)^{5}}{5}
f
−
1
(
x
)
=
5
(
x
−
10
)
5
View step-by-step help
Home
Math Problems
Calculus
Find derivatives of using multiple formulae
Full solution
Q.
For the function
f
(
x
)
=
5
x
+
10
5
f(x)=5 \sqrt[5]{x+10}
f
(
x
)
=
5
5
x
+
10
, find
f
−
1
(
x
)
f^{-1}(x)
f
−
1
(
x
)
.
\newline
f
−
1
(
x
)
=
x
5
5
−
10
f^{-1}(x)=\frac{x^{5}}{5}-10
f
−
1
(
x
)
=
5
x
5
−
10
\newline
f
−
1
(
x
)
=
(
x
5
)
5
−
10
f^{-1}(x)=\left(\frac{x}{5}\right)^{5}-10
f
−
1
(
x
)
=
(
5
x
)
5
−
10
\newline
f
−
1
(
x
)
=
(
x
5
−
10
)
5
f^{-1}(x)=\left(\frac{x}{5}-10\right)^{5}
f
−
1
(
x
)
=
(
5
x
−
10
)
5
\newline
f
−
1
(
x
)
=
(
x
−
10
)
5
5
f^{-1}(x)=\frac{(x-10)^{5}}{5}
f
−
1
(
x
)
=
5
(
x
−
10
)
5
Replace with
y
y
y
:
Replace
f
(
x
)
f(x)
f
(
x
)
with
y
y
y
.
\newline
y
=
5
x
+
10
y = 5\sqrt{x+10}
y
=
5
x
+
10
Swap x and y:
Swap x and y.
\newline
x
=
5
y
+
10
x = 5\sqrt{y+10}
x
=
5
y
+
10
Solve for y:
Solve for y.
\newline
To isolate y, we first divide both sides by
5
5
5
:
\newline
x
5
=
y
+
10
\frac{x}{5} = \sqrt{y+10}
5
x
=
y
+
10
Square to eliminate root:
Square both sides to eliminate the
square root
.
\newline
(
x
5
)
2
=
y
+
10
(\frac{x}{5})^2 = y + 10
(
5
x
)
2
=
y
+
10
Subtract
10
10
10
for
y
y
y
:
Subtract
10
10
10
from both sides to solve for
y
y
y
.
y
=
(
x
5
)
2
−
10
y = \left(\frac{x}{5}\right)^2 - 10
y
=
(
5
x
)
2
−
10
Replace with
f
−
1
(
x
)
f^{-1}(x)
f
−
1
(
x
)
:
Replace
y
y
y
with
f
−
1
(
x
)
f^{-1}(x)
f
−
1
(
x
)
to express the inverse function.
\newline
f
−
1
(
x
)
=
(
x
5
)
2
−
10
f^{-1}(x) = \left(\frac{x}{5}\right)^2 - 10
f
−
1
(
x
)
=
(
5
x
)
2
−
10
More problems from Find derivatives of using multiple formulae
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
cos
(
x
)
f(x) = \cos(x)
f
(
x
)
=
cos
(
x
)
\newline
f
′
(
x
)
=
f'(x) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
tan
(
x
)
f(x) = \tan(x)
f
(
x
)
=
tan
(
x
)
\newline
f
′
(
x
)
=
f'(x) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
e
x
f(x) = e^x
f
(
x
)
=
e
x
\newline
f
′
(
x
)
=
f'\left(x\right) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
ln
(
x
)
f(x) = \ln(x)
f
(
x
)
=
ln
(
x
)
\newline
f
′
(
x
)
=
f'(x) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
tan
−
1
x
f(x) = \tan^{-1}{x}
f
(
x
)
=
tan
−
1
x
\newline
f
′
(
x
)
=
f'(x) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
x
e
x
f(x) = x e^x
f
(
x
)
=
x
e
x
\newline
f
′
(
x
)
=
f'\left(x\right) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
e
x
x
f(x) = \frac{e^x}{x}
f
(
x
)
=
x
e
x
\newline
f
′
(
x
)
=
f'(x) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
e
(
x
+
1
)
f(x) = e^{(x + 1)}
f
(
x
)
=
e
(
x
+
1
)
\newline
f
′
(
x
)
=
f'\left(x\right) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
x
+
3
f(x) = \sqrt{x+3}
f
(
x
)
=
x
+
3
\newline
f
′
(
x
)
=
f'(x) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
g
(
x
)
g(x)
g
(
x
)
.
\newline
g
(
x
)
=
ln
(
2
x
)
g(x) = \ln(2x)
g
(
x
)
=
ln
(
2
x
)
\newline
g
′
(
x
)
=
g^{\prime}(x) =
g
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant