Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

For the function 
f(x)=5root(5)(x+10), find 
f^(-1)(x).

f^(-1)(x)=(x^(5))/(5)-10

f^(-1)(x)=((x)/(5))^(5)-10

f^(-1)(x)=((x)/(5)-10)^(5)

f^(-1)(x)=((x-10)^(5))/(5)

For the function f(x)=5x+105 f(x)=5 \sqrt[5]{x+10} , find f1(x) f^{-1}(x) .\newlinef1(x)=x5510 f^{-1}(x)=\frac{x^{5}}{5}-10 \newlinef1(x)=(x5)510 f^{-1}(x)=\left(\frac{x}{5}\right)^{5}-10 \newlinef1(x)=(x510)5 f^{-1}(x)=\left(\frac{x}{5}-10\right)^{5} \newlinef1(x)=(x10)55 f^{-1}(x)=\frac{(x-10)^{5}}{5}

Full solution

Q. For the function f(x)=5x+105 f(x)=5 \sqrt[5]{x+10} , find f1(x) f^{-1}(x) .\newlinef1(x)=x5510 f^{-1}(x)=\frac{x^{5}}{5}-10 \newlinef1(x)=(x5)510 f^{-1}(x)=\left(\frac{x}{5}\right)^{5}-10 \newlinef1(x)=(x510)5 f^{-1}(x)=\left(\frac{x}{5}-10\right)^{5} \newlinef1(x)=(x10)55 f^{-1}(x)=\frac{(x-10)^{5}}{5}
  1. Replace with yy: Replace f(x)f(x) with yy.\newliney=5x+10y = 5\sqrt{x+10}
  2. Swap x and y: Swap x and y.\newlinex=5y+10x = 5\sqrt{y+10}
  3. Solve for y: Solve for y.\newlineTo isolate y, we first divide both sides by 55:\newlinex5=y+10\frac{x}{5} = \sqrt{y+10}
  4. Square to eliminate root: Square both sides to eliminate the square root. \newline(x5)2=y+10(\frac{x}{5})^2 = y + 10
  5. Subtract 1010 for yy: Subtract 1010 from both sides to solve for yy.y=(x5)210y = \left(\frac{x}{5}\right)^2 - 10
  6. Replace with f1(x)f^{-1}(x): Replace yy with f1(x)f^{-1}(x) to express the inverse function.\newlinef1(x)=(x5)210f^{-1}(x) = \left(\frac{x}{5}\right)^2 - 10

More problems from Find derivatives of using multiple formulae