Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

For the function 
f(x)=(2x+3)/(2x), find 
f^(-1)(x).
Answer: 
f^(-1)(x)=

For the function f(x)=2x+32x f(x)=\frac{2 x+3}{2 x} , find f1(x) f^{-1}(x) .\newlineAnswer: f1(x)= f^{-1}(x)=

Full solution

Q. For the function f(x)=2x+32x f(x)=\frac{2 x+3}{2 x} , find f1(x) f^{-1}(x) .\newlineAnswer: f1(x)= f^{-1}(x)=
  1. Replace with yy: To find the inverse function, f1(x)f^{-1}(x), we first replace f(x)f(x) with yy for easier manipulation.\newlineSo, we have y=2x+32xy = \frac{2x + 3}{2x}.
  2. Swap xx and yy: Next, we swap xx and yy to find the inverse. This gives us x=2y+32yx = \frac{2y + 3}{2y}.
  3. Multiply by 2y2y: Now, we solve for yy. To do this, we first multiply both sides by 2y2y to get rid of the fraction:\newline2yx=2y+32yx = 2y + 3.
  4. Move terms: We then move all terms involving yy to one side and the constant to the other side: 2yx2y=32yx - 2y = 3.
  5. Factor out yy: Factor out yy from the left side of the equation: y(2x2)=3y(2x - 2) = 3.
  6. Divide by (2x2)(2x - 2): Divide both sides by (2x2)(2x - 2) to solve for yy:y=3(2x2).y = \frac{3}{(2x - 2)}.
  7. Replace with f1(x)f^{-1}(x): Replace yy with f1(x)f^{-1}(x) to denote that this is the inverse function:\newlinef1(x)=32x2.f^{-1}(x) = \frac{3}{2x - 2}.

More problems from Simplify variable expressions using properties