Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

For the function 
f(x)=2(x-3)^((1)/(7)), find 
f^(-1)(x).

f^(-1)(x)=(x^(7)+3)/(2)

f^(-1)(x)=((x)/(2))^(7)+3

f^(-1)(x)=(x^(7))/(2)+3

f^(-1)(x)=((x+3)/(2))^(7)

For the function f(x)=2(x3)17 f(x)=2(x-3)^{\frac{1}{7}} , find f1(x) f^{-1}(x) .\newlinef1(x)=x7+32 f^{-1}(x)=\frac{x^{7}+3}{2} \newlinef1(x)=(x2)7+3 f^{-1}(x)=\left(\frac{x}{2}\right)^{7}+3 \newlinef1(x)=x72+3 f^{-1}(x)=\frac{x^{7}}{2}+3 \newlinef1(x)=(x+32)7 f^{-1}(x)=\left(\frac{x+3}{2}\right)^{7}

Full solution

Q. For the function f(x)=2(x3)17 f(x)=2(x-3)^{\frac{1}{7}} , find f1(x) f^{-1}(x) .\newlinef1(x)=x7+32 f^{-1}(x)=\frac{x^{7}+3}{2} \newlinef1(x)=(x2)7+3 f^{-1}(x)=\left(\frac{x}{2}\right)^{7}+3 \newlinef1(x)=x72+3 f^{-1}(x)=\frac{x^{7}}{2}+3 \newlinef1(x)=(x+32)7 f^{-1}(x)=\left(\frac{x+3}{2}\right)^{7}
  1. Write function as yy: To find the inverse function, we first write the function as y=2(x3)17y = 2(x - 3)^{\frac{1}{7}}.
  2. Swap x and y: Next, we swap x and y to begin solving for the inverse function: x=2(y3)17x = 2(y - 3)^{\frac{1}{7}}.
  3. Isolate y term: Now, we solve for y by isolating the term with y in it. We start by dividing both sides by 22: (x/2)=(y3)(1/7)(x/2) = (y - 3)^{(1/7)}.
  4. Remove exponent: To remove the exponent, we raise both sides to the power of 77: ((x/2)7)=y3((x/2)^7) = y - 3.
  5. Add 33: Finally, we add 33 to both sides to solve for yy: y=(x2)7+3y = \left(\frac{x}{2}\right)^7 + 3.
  6. Find inverse function: We have found the inverse function, which is f1(x)=(x2)7+3f^{-1}(x) = \left(\frac{x}{2}\right)^7 + 3.

More problems from Find derivatives of using multiple formulae