Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
For the function
f
(
x
)
=
2
(
x
−
3
)
1
7
f(x)=2(x-3)^{\frac{1}{7}}
f
(
x
)
=
2
(
x
−
3
)
7
1
, find
f
−
1
(
x
)
f^{-1}(x)
f
−
1
(
x
)
.
\newline
f
−
1
(
x
)
=
x
7
+
3
2
f^{-1}(x)=\frac{x^{7}+3}{2}
f
−
1
(
x
)
=
2
x
7
+
3
\newline
f
−
1
(
x
)
=
(
x
2
)
7
+
3
f^{-1}(x)=\left(\frac{x}{2}\right)^{7}+3
f
−
1
(
x
)
=
(
2
x
)
7
+
3
\newline
f
−
1
(
x
)
=
x
7
2
+
3
f^{-1}(x)=\frac{x^{7}}{2}+3
f
−
1
(
x
)
=
2
x
7
+
3
\newline
f
−
1
(
x
)
=
(
x
+
3
2
)
7
f^{-1}(x)=\left(\frac{x+3}{2}\right)^{7}
f
−
1
(
x
)
=
(
2
x
+
3
)
7
View step-by-step help
Home
Math Problems
Calculus
Find derivatives of using multiple formulae
Full solution
Q.
For the function
f
(
x
)
=
2
(
x
−
3
)
1
7
f(x)=2(x-3)^{\frac{1}{7}}
f
(
x
)
=
2
(
x
−
3
)
7
1
, find
f
−
1
(
x
)
f^{-1}(x)
f
−
1
(
x
)
.
\newline
f
−
1
(
x
)
=
x
7
+
3
2
f^{-1}(x)=\frac{x^{7}+3}{2}
f
−
1
(
x
)
=
2
x
7
+
3
\newline
f
−
1
(
x
)
=
(
x
2
)
7
+
3
f^{-1}(x)=\left(\frac{x}{2}\right)^{7}+3
f
−
1
(
x
)
=
(
2
x
)
7
+
3
\newline
f
−
1
(
x
)
=
x
7
2
+
3
f^{-1}(x)=\frac{x^{7}}{2}+3
f
−
1
(
x
)
=
2
x
7
+
3
\newline
f
−
1
(
x
)
=
(
x
+
3
2
)
7
f^{-1}(x)=\left(\frac{x+3}{2}\right)^{7}
f
−
1
(
x
)
=
(
2
x
+
3
)
7
Write function as
y
y
y
:
To find the inverse function, we first write the function as
y
=
2
(
x
−
3
)
1
7
y = 2(x - 3)^{\frac{1}{7}}
y
=
2
(
x
−
3
)
7
1
.
Swap x and y:
Next, we swap x and y to begin solving for the inverse function:
x
=
2
(
y
−
3
)
1
7
x = 2(y - 3)^{\frac{1}{7}}
x
=
2
(
y
−
3
)
7
1
.
Isolate y term:
Now, we solve for y by isolating the term with y in it. We start by dividing both sides by
2
2
2
:
(
x
/
2
)
=
(
y
−
3
)
(
1
/
7
)
(x/2) = (y - 3)^{(1/7)}
(
x
/2
)
=
(
y
−
3
)
(
1/7
)
.
Remove exponent:
To remove the exponent, we raise both sides to the power of
7
7
7
:
(
(
x
/
2
)
7
)
=
y
−
3
((x/2)^7) = y - 3
((
x
/2
)
7
)
=
y
−
3
.
Add
3
3
3
:
Finally, we add
3
3
3
to both sides to solve for
y
y
y
:
y
=
(
x
2
)
7
+
3
y = \left(\frac{x}{2}\right)^7 + 3
y
=
(
2
x
)
7
+
3
.
Find inverse function:
We have found the inverse function, which is
f
−
1
(
x
)
=
(
x
2
)
7
+
3
f^{-1}(x) = \left(\frac{x}{2}\right)^7 + 3
f
−
1
(
x
)
=
(
2
x
)
7
+
3
.
More problems from Find derivatives of using multiple formulae
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
cos
(
x
)
f(x) = \cos(x)
f
(
x
)
=
cos
(
x
)
\newline
f
′
(
x
)
=
f'(x) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
tan
(
x
)
f(x) = \tan(x)
f
(
x
)
=
tan
(
x
)
\newline
f
′
(
x
)
=
f'(x) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
e
x
f(x) = e^x
f
(
x
)
=
e
x
\newline
f
′
(
x
)
=
f'\left(x\right) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
ln
(
x
)
f(x) = \ln(x)
f
(
x
)
=
ln
(
x
)
\newline
f
′
(
x
)
=
f'(x) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
tan
−
1
x
f(x) = \tan^{-1}{x}
f
(
x
)
=
tan
−
1
x
\newline
f
′
(
x
)
=
f'(x) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
x
e
x
f(x) = x e^x
f
(
x
)
=
x
e
x
\newline
f
′
(
x
)
=
f'\left(x\right) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
e
x
x
f(x) = \frac{e^x}{x}
f
(
x
)
=
x
e
x
\newline
f
′
(
x
)
=
f'(x) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
e
(
x
+
1
)
f(x) = e^{(x + 1)}
f
(
x
)
=
e
(
x
+
1
)
\newline
f
′
(
x
)
=
f'\left(x\right) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
x
+
3
f(x) = \sqrt{x+3}
f
(
x
)
=
x
+
3
\newline
f
′
(
x
)
=
f'(x) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
g
(
x
)
g(x)
g
(
x
)
.
\newline
g
(
x
)
=
ln
(
2
x
)
g(x) = \ln(2x)
g
(
x
)
=
ln
(
2
x
)
\newline
g
′
(
x
)
=
g^{\prime}(x) =
g
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant