Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find yy' if y=ln(4+x2x).y=\ln \left(\frac{\sqrt{4+x^{2}}}{x}\right).

Full solution

Q. Find yy' if y=ln(4+x2x).y=\ln \left(\frac{\sqrt{4+x^{2}}}{x}\right).
  1. Identify function: Identify the function to differentiate.\newliney=ln(4+x2x)y = \ln\left(\frac{\sqrt{4+x^2}}{x}\right)
  2. Apply chain rule: Apply the chain rule for derivatives to the logarithmic function.\newlineLet u=4+x2xu = \frac{\sqrt{4+x^2}}{x}\newliney=ln(u)y = \ln(u)\newlinedydx=1ududx\frac{dy}{dx} = \frac{1}{u} \cdot \frac{du}{dx}
  3. Differentiate uu: Differentiate u=4+x2xu = \frac{\sqrt{4+x^2}}{x} using the quotient rule.\newlineu=4+x2xu = \frac{\sqrt{4+x^2}}{x}\newlinedudx=(12(4+x2)122xx4+x21)x2\frac{du}{dx} = \frac{\left(\frac{1}{2}(4+x^2)^{-\frac{1}{2}} \cdot 2x \cdot x - \sqrt{4+x^2} \cdot 1\right)}{x^2}\newline =(x4+x24+x2x)x= \frac{\left(\frac{x}{\sqrt{4+x^2}} - \frac{\sqrt{4+x^2}}{x}\right)}{x}

More problems from Find derivatives of logarithmic functions