Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the 
y-coordinate of the 
y-intercept of the polynomial function defined below.

f(x)=-2x(x^(2)-1)(4x-1)(4x+4)
Answer:

Find the y y -coordinate of the y y -intercept of the polynomial function defined below.\newlinef(x)=2x(x21)(4x1)(4x+4) f(x)=-2 x\left(x^{2}-1\right)(4 x-1)(4 x+4) \newlineAnswer:

Full solution

Q. Find the y y -coordinate of the y y -intercept of the polynomial function defined below.\newlinef(x)=2x(x21)(4x1)(4x+4) f(x)=-2 x\left(x^{2}-1\right)(4 x-1)(4 x+4) \newlineAnswer:
  1. Evaluate at x=0x = 0: To find the yy-coordinate of the yy-intercept of the function f(x)f(x), we need to evaluate f(x)f(x) at x=0x = 0, because the yy-intercept occurs where the graph of the function crosses the yy-axis, and the xx-coordinate of any point on the yy-axis is yy00.
  2. Substitute x=0x = 0: Substitute x=0x = 0 into the function f(x)=2x(x21)(4x1)(4x+4)f(x) = -2x(x^2 - 1)(4x - 1)(4x + 4).\newlinef(0)=20(021)(401)(40+4)f(0) = -2\cdot 0\cdot (0^2 - 1)(4\cdot 0 - 1)(4\cdot 0 + 4)
  3. Simplify the expression: Simplify the expression by performing the multiplication.\newlinef(0)=2×0×(01)(01)(0+4)f(0) = -2 \times 0 \times (0 - 1)(0 - 1)(0 + 4)\newlinef(0)=2×0×(1)(1)(4)f(0) = -2 \times 0 \times (-1)(-1)(4)\newlinef(0)=2×0×1×4f(0) = -2 \times 0 \times 1 \times 4\newlinef(0)=0f(0) = 0

More problems from Find derivatives of sine and cosine functions