Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the volume of a right circular cone that has a height of 
19.8ft and a base with a circumference of 
3.5ft. Round your answer to the nearest tenth of a cubic foot.
Answer: 
ft^(3)

Find the volume of a right circular cone that has a height of 19.8ft 19.8 \mathrm{ft} and a base with a circumference of 3.5ft 3.5 \mathrm{ft} . Round your answer to the nearest tenth of a cubic foot.\newlineAnswer: ft3 \mathrm{ft}^{3}

Full solution

Q. Find the volume of a right circular cone that has a height of 19.8ft 19.8 \mathrm{ft} and a base with a circumference of 3.5ft 3.5 \mathrm{ft} . Round your answer to the nearest tenth of a cubic foot.\newlineAnswer: ft3 \mathrm{ft}^{3}
  1. Find Radius of Base: First, we need to find the radius of the base of the cone. The formula for the circumference of a circle is C=2πrC = 2\pi r, where CC is the circumference and rr is the radius. We can rearrange this formula to solve for rr: r=C2πr = \frac{C}{2\pi}.
  2. Calculate Radius: Now, let's calculate the radius using the given circumference of 3.53.5 feet: r=3.5ft2πr = \frac{3.5 \, \text{ft}}{2\pi}. We can approximate π\pi as 3.141593.14159.
  3. Volume Formula: Performing the calculation: r=3.5ft2×3.141593.5ft6.283180.557ft.r = \frac{3.5 \, \text{ft}}{2 \times 3.14159} \approx \frac{3.5 \, \text{ft}}{6.28318} \approx 0.557 \, \text{ft}.
  4. Substitute Values: Next, we use the formula for the volume of a cone, which is V=(13)πr2hV = (\frac{1}{3})\pi r^2 h, where VV is the volume, rr is the radius, and hh is the height.
  5. Calculate Volume: Substitute the values of rr and hh into the volume formula: V=13π(0.557 ft)2(19.8 ft)V = \frac{1}{3}\pi(0.557 \text{ ft})^2(19.8 \text{ ft}).
  6. Perform Multiplication: Calculate the volume: V13×3.14159×(0.557 ft)2×19.8 ft13×3.14159×0.310249 ft2×19.8 ftV \approx \frac{1}{3} \times 3.14159 \times (0.557 \text{ ft})^2 \times 19.8 \text{ ft} \approx \frac{1}{3} \times 3.14159 \times 0.310249 \text{ ft}^2 \times 19.8 \text{ ft}.
  7. Round Answer: Perform the multiplication: V(13)×3.14159×0.310249 ft2×19.8 ft3.14159×0.103416 ft2×19.8 ft6.437 ft3V \approx (\frac{1}{3}) \times 3.14159 \times 0.310249 \text{ ft}^2 \times 19.8 \text{ ft} \approx 3.14159 \times 0.103416 \text{ ft}^2 \times 19.8 \text{ ft} \approx 6.437 \text{ ft}^3.
  8. Round Answer: Perform the multiplication: V(1/3)×3.14159×0.310249 ft2×19.8 ft3.14159×0.103416 ft2×19.8 ft6.437 ft3V \approx (1/3) \times 3.14159 \times 0.310249 \text{ ft}^2 \times 19.8 \text{ ft} \approx 3.14159 \times 0.103416 \text{ ft}^2 \times 19.8 \text{ ft} \approx 6.437 \text{ ft}^3. Finally, we round the answer to the nearest tenth of a cubic foot: V6.4 ft3V \approx 6.4 \text{ ft}^3.

More problems from Convert between customary and metric systems