Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the volume of a right circular cone that has a height of 15.5 in and a base with a circumference of 
16.8in. Round your answer to the nearest tenth of a cubic inch.
Answer: in 
^(3)

Find the volume of a right circular cone that has a height of 1515.55 in\text{in} and a base with a circumference of 16.8 16.8 in\mathrm{in} . Round your answer to the nearest tenth of a cubic inch.\newlineAnswer: in\text{in} 3 ^{3}

Full solution

Q. Find the volume of a right circular cone that has a height of 1515.55 in\text{in} and a base with a circumference of 16.8 16.8 in\mathrm{in} . Round your answer to the nearest tenth of a cubic inch.\newlineAnswer: in\text{in} 3 ^{3}
  1. Find Radius of Base: First, we need to find the radius of the base of the cone. We know the circumference CC of the base is given by C=2πrC = 2 \cdot \pi \cdot r, where rr is the radius. We can rearrange this formula to solve for rr: r=C2πr = \frac{C}{2 \cdot \pi}.
  2. Calculate Radius: Now, let's calculate the radius using the given circumference of 16.816.8 inches: r=16.8in2πr = \frac{16.8 \, \text{in}}{2 \cdot \pi}. We can approximate π\pi as 3.141593.14159.
  3. Use Volume Formula: Performing the calculation for the radius: r=16.8in(2×3.14159)16.8in6.283182.675in.r = \frac{16.8 \, \text{in}}{(2 \times 3.14159)} \approx \frac{16.8 \, \text{in}}{6.28318} \approx 2.675 \, \text{in}.
  4. Substitute Values: Next, we need to use the formula for the volume of a cone, which is V=13πr2hV = \frac{1}{3} \pi r^2 h, where VV is the volume, rr is the radius, and hh is the height.
  5. Calculate Volume: Substitute the values of rr and hh into the volume formula: V=13π(2.675in)2×15.5inV = \frac{1}{3} \pi (2.675 \, \text{in})^2 \times 15.5 \, \text{in}.
  6. Continue Calculation: Calculate the volume: V=13×3.14159×(2.675in)2×15.5in13×3.14159×7.156625in2×15.5in.V = \frac{1}{3} \times 3.14159 \times (2.675 \, \text{in})^2 \times 15.5 \, \text{in} \approx \frac{1}{3} \times 3.14159 \times 7.156625 \, \text{in}^2 \times 15.5 \, \text{in}.
  7. Finish Calculation: Continue the calculation: V(13)×3.14159×111.02890625in3×15.5in3.14159×37.0096354167in3×15.5in.V \approx (\frac{1}{3}) \times 3.14159 \times 111.02890625 \, \text{in}^3 \times 15.5 \, \text{in} \approx 3.14159 \times 37.0096354167 \, \text{in}^3 \times 15.5 \, \text{in}.
  8. Round Volume: Finish the calculation: V3.14159×573.649449583V \approx 3.14159 \times 573.649449583 in31809.557^3 \approx 1809.557 in3^3.
  9. Round Volume: Finish the calculation: V3.14159×573.649449583V \approx 3.14159 \times 573.649449583 in3^3 1809.557\approx 1809.557 in3^3.Finally, we round the volume to the nearest tenth: V1809.6V \approx 1809.6 in3^3.

More problems from Convert between customary and metric systems