Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the volume of a right circular cone that has a height of 
7.7cm and a base with a radius of 
20cm. Round your answer to the nearest tenth of a cubic centimeter.
Answer: 
cm^(3)

Find the volume of a right circular cone that has a height of 7.7 cm 7.7 \mathrm{~cm} and a base with a radius of 20 cm 20 \mathrm{~cm} . Round your answer to the nearest tenth of a cubic centimeter.\newlineAnswer: cm3 \mathrm{cm}^{3}

Full solution

Q. Find the volume of a right circular cone that has a height of 7.7 cm 7.7 \mathrm{~cm} and a base with a radius of 20 cm 20 \mathrm{~cm} . Round your answer to the nearest tenth of a cubic centimeter.\newlineAnswer: cm3 \mathrm{cm}^{3}
  1. Formula Explanation: To find the volume of a right circular cone, we use the formula:\newlineVolume = (1/3)πr2h(1/3) \cdot \pi \cdot r^2 \cdot h\newlinewhere rr is the radius of the base and hh is the height of the cone.
  2. Given Values: First, we plug in the given values into the formula:\newlineVolume = (13)π(20cm)27.7cm(\frac{1}{3}) \cdot \pi \cdot (20 \, \text{cm})^2 \cdot 7.7 \, \text{cm}
  3. Radius Calculation: Next, we calculate the square of the radius: (20cm)2=400cm2(20 \, \text{cm})^2 = 400 \, \text{cm}^2
  4. Substitution: Now we substitute the squared radius back into the volume formula:\newlineVolume = (13)π400cm27.7cm(\frac{1}{3}) \cdot \pi \cdot 400 \, \text{cm}^2 \cdot 7.7 \, \text{cm}
  5. Multiplication: We perform the multiplication of the constants and the height: Volume = \left(\frac{\(1\)}{\(3\)}\right) \times \pi \times \(400 \, \text{cm}^22 \times 77.77 \, \text{cm} = \left(\frac{11}{33}\right) \times \pi \times 30803080 \, \text{cm}^33
  6. Volume Calculation: We calculate the volume by multiplying the remaining terms:\newlineVolume 13×3.14159×3080cm31026.53×3.14159cm3\approx \frac{1}{3} \times 3.14159 \times 3080 \, \text{cm}^3 \approx 1026.53 \times 3.14159 \, \text{cm}^3
  7. Approximation: Finally, we find the approximate value of the volume: Volume3227.1847cm3\text{Volume} \approx 3227.1847 \, \text{cm}^3
  8. Rounding: We round the volume to the nearest tenth of a cubic centimeter: Volume3227.2cm3\text{Volume} \approx 3227.2\, \text{cm}^3

More problems from Convert between customary and metric systems