Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the volume of a pyramid with a square base, where the perimeter of the base is 
15.3cm and the height of the pyramid is 
9.5cm. Round your answer to the nearest tenth of a cubic centimeter.
Answer: 
cm^(3)

Find the volume of a pyramid with a square base, where the perimeter of the base is 15.3 cm 15.3 \mathrm{~cm} and the height of the pyramid is 9.5 cm 9.5 \mathrm{~cm} . Round your answer to the nearest tenth of a cubic centimeter.\newlineAnswer: cm3 \mathrm{cm}^{3}

Full solution

Q. Find the volume of a pyramid with a square base, where the perimeter of the base is 15.3 cm 15.3 \mathrm{~cm} and the height of the pyramid is 9.5 cm 9.5 \mathrm{~cm} . Round your answer to the nearest tenth of a cubic centimeter.\newlineAnswer: cm3 \mathrm{cm}^{3}
  1. Determine Side Length: To find the volume of a pyramid with a square base, we first need to determine the length of one side of the square base. Since the perimeter of the base is the sum of all four sides, we divide the perimeter by 44. \newlinePerimeter of the base =15.3cm= 15.3\,\text{cm} \newlineLength of one side of the square base =Perimeter÷4= \text{Perimeter} \div 4 \newlineLength of one side =15.3cm÷4= 15.3\,\text{cm} \div 4
  2. Calculate Base Area: Now, let's calculate the length of one side of the square base.\newlineLength of one side = 15.3cm÷4=3.825cm15.3 \, \text{cm} \div 4 = 3.825 \, \text{cm}
  3. Find Pyramid Volume: Next, we calculate the area of the square base by squaring the length of one side.\newlineArea of the base = (Length of one side)\newlineArea of the base = (3.825cm)2(3.825 \, \text{cm})^2
  4. Calculate Final Volume: Let's perform the calculation for the area of the base.\newlineArea of the base = (3.825cm)2=14.630625cm2(3.825 \, \text{cm})^2 = 14.630625 \, \text{cm}^2
  5. Round to Nearest Tenth: Now we can find the volume of the pyramid using the formula for the volume of a pyramid with a square base: Volume =13×(Base Area)×(Height)= \frac{1}{3} \times (\text{Base Area}) \times (\text{Height}).\newlineVolume =13×(14.630625cm2)×(9.5cm)= \frac{1}{3} \times (14.630625 \, \text{cm}^2) \times (9.5 \, \text{cm})
  6. Round to Nearest Tenth: Now we can find the volume of the pyramid using the formula for the volume of a pyramid with a square base: Volume = (13)×(Base Area)×(Height)(\frac{1}{3}) \times (\text{Base Area}) \times (\text{Height}).Volume=(13)×(14.630625cm2)×(9.5cm)\text{Volume} = (\frac{1}{3}) \times (14.630625 \, \text{cm}^2) \times (9.5 \, \text{cm})Let's calculate the volume of the pyramid.Volume=(13)×(14.630625cm2)×(9.5cm)46.29796875cm3\text{Volume} = (\frac{1}{3}) \times (14.630625 \, \text{cm}^2) \times (9.5 \, \text{cm}) \approx 46.29796875 \, \text{cm}^3
  7. Round to Nearest Tenth: Now we can find the volume of the pyramid using the formula for the volume of a pyramid with a square base: Volume = (13)×(Base Area)×(Height)(\frac{1}{3}) \times (\text{Base Area}) \times (\text{Height}).Volume=(13)×(14.630625 cm2)×(9.5 cm)\text{Volume} = (\frac{1}{3}) \times (14.630625 \text{ cm}^2) \times (9.5 \text{ cm})Let's calculate the volume of the pyramid.Volume=(13)×(14.630625 cm2)×(9.5 cm)46.29796875 cm3\text{Volume} = (\frac{1}{3}) \times (14.630625 \text{ cm}^2) \times (9.5 \text{ cm}) \approx 46.29796875 \text{ cm}^3Finally, we round the volume to the nearest tenth of a cubic centimeter.Volume46.3 cm3\text{Volume} \approx 46.3 \text{ cm}^3

More problems from Convert between customary and metric systems