Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the value of 
f(-1)+f(2)-f(4), where

f(x)={[sqrt(2x-4)," for "x >= 4],[x," for "0 <= x < 4],[-2," for "x < 0]:}

Find the value of f(1)+f(2)f(4) f(-1)+f(2)-f(4) , where\newlinef(x)={2x4amp; for x4xamp; for 0xlt;42amp; for xlt;0 f(x)=\left\{\begin{array}{lll} \sqrt{2 x-4} &amp; \text { for } x \geq 4 \\ x &amp; \text { for } 0 \leq x&lt;4 \\ -2 &amp; \text { for } x&lt;0 \end{array}\right.

Full solution

Q. Find the value of f(1)+f(2)f(4) f(-1)+f(2)-f(4) , where\newlinef(x)={2x4 for x4x for 0x<42 for x<0 f(x)=\left\{\begin{array}{lll} \sqrt{2 x-4} & \text { for } x \geq 4 \\ x & \text { for } 0 \leq x<4 \\ -2 & \text { for } x<0 \end{array}\right.
  1. Evaluate f(1)f(-1): Evaluate f(1)f(-1) using the definition of the function for x < 0.\newlineSince x=1x = -1 is less than 00, we use the third piece of the function f(x)=2f(x) = -2.\newlinef(1)=2f(-1) = -2
  2. Evaluate f(2)f(2): Evaluate f(2)f(2) using the definition of the function for 0 \leq x < 4.\newlineSince x=2x = 2 is between 00 and 44, we use the second piece of the function f(x)=xf(x) = x.\newlinef(2)=2f(2) = 2
  3. Evaluate f(4)f(4): Evaluate f(4)f(4) using the definition of the function for x4x \geq 4. Since x=4x = 4 is greater than or equal to 44, we use the first piece of the function f(x)=2x4f(x) = \sqrt{2x - 4}. f(4)=244=84=4=2f(4) = \sqrt{2\cdot4 - 4} = \sqrt{8 - 4} = \sqrt{4} = 2
  4. Combine results: Combine the results from steps 11, 22, and 33 to find the value of f(1)+f(2)f(4)f(-1) + f(2) - f(4).f(1)+f(2)f(4)=(2)+(2)(2)=2f(-1) + f(2) - f(4) = (-2) + (2) - (2) = -2

More problems from Find derivatives of logarithmic functions